
Platform LSF
Version 9 Release 1.2

Using IBM Platform License Scheduler

SC27-5308-02

���

Platform LSF
Version 9 Release 1.2

Using IBM Platform License Scheduler

SC27-5308-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 175.

First edition

This edition applies to version 9, release 1, modification 2 of IBM Platform License Scheduler (product number
5725G82) and to all subsequent releases and modifications until otherwise indicated in new editions.

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the
change.

If you find an error in any Platform Computing documentation, or you have a suggestion for improving it, please
let us know. Send your suggestions, comments and questions to the following email address:

pccdoc@ca.ibm.com

Be sure include the publication title and order number, and, if applicable, the specific location of the information
about which you have comments (for example, a page number or a browser URL). When you send information to
IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

© Copyright IBM Corporation 1992, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:pccdoc@ca.ibm.com

Contents

Chapter 1. Introduction 1
Overview 1
Differences between License Scheduler editions . . . 1
Glossary 2
Architecture 3

Chapter 2. Installing and starting
License Scheduler 7
Install License Scheduler 7
Start License Scheduler 12
LSF parameters in License Scheduler 13
About submitting jobs 14
After configuration changes 14
Add a cluster to License Scheduler 15
Configure multiple administrators 15
Upgrade License Scheduler 16
Firewalls 17

Chapter 3. License Scheduler concepts 19
License Scheduler modes 19
Project groups 21
Service domains in License Scheduler 22
Distribution policies 24
Project mode preemption 27
License usage with FlexNet 30

Chapter 4. Configuring License
Scheduler 33
Configure cluster mode 33
Configure cluster mode with guarantees. 41
Project mode with projects 44
Project mode optional settings 52
Project mode with project groups 61

Configure fast dispatch project mode 65
Automatic time-based configuration 70
Failover 73
User authentication 80

Chapter 5. Viewing information and
troubleshooting 83
About viewing available licenses 83
About error logs. 85
Troubleshooting 86

Chapter 6. Reference 89
lsf.licensescheduler 89
bladmin 141
blcollect 144
blcstat 145
blhosts 147
blinfo 147
blkill 153
blparams 153
blstat 154
bltasks. 163
blusers 166
fod.conf 169
fodadmin. 171
fodapps 171
fodhosts 172
fodid 173
taskman 173

Notices 175
Trademarks 177
Privacy policy considerations 177

© Copyright IBM Corp. 1992, 2013 iii

iv Using IBM Platform License Scheduler

Chapter 1. Introduction

Overview
Applying policies to how licenses are shared can have significant benefits both in
terms of productivity and cost savings.

Share licenses more easily

IBM Platform License Scheduler (License Scheduler) makes it easy to share licenses
between project teams and departments within the same design center or around
the globe. With tools to allocate and monitor licenses, license owners can share
licenses not in use, while still ensuring immediate access to licenses when needed.
With more effective sharing, all users perceive a larger pool of licenses.

Ensure appropriate license allocation

License Scheduler enables flexible, hierarchical sharing policies that reflect the
needs of the business. During quiet periods, when licenses are not in contention,
licenses can be allocated to anyone who needs them keeping utilization and
throughput high. During busy periods, the supply of licenses can be allocated
based on policy toward the most time or revenue critical projects.

Improve service levels and productivity

By ensuring access to a minimum share of licenses and enabling allocation to flex
between clusters that are based on need, licenses are more readily available and
jobs are less likely to pend in queues that are awaiting license resources. This
translates into reduced wait times and better productivity, and contributes to a
faster, more efficient design environment.

Reduce or avoid cost

By being able to allocate scarce licenses to the most critical projects, and by being
able to analyze license usage in the context of cluster resources, users and projects,
planners are better able to find and remove bottlenecks, making their existing
licenses more productive. With better visibility to how licenses are being used, they
can plan license requirements more effectively ultimately helping to contain costs
and boost productivity.

License Scheduler controls the software license sharing in your organization.
License Scheduler works with FlexNet™ products to control and monitor license
usage.

Differences between License Scheduler editions
License Scheduler is available in two editions: Basic Edition and Standard Edition.

License Scheduler Basic Edition is included with LSF and is not intended to apply
policies on how licenses are shared between clusters or projects. Rather, License
Scheduler Basic Edition is intended to replace an external load information
manager (elim) to collect external load indicies for licenses managed by FlexNet.
To replace this elim, License Scheduler Basic Edition limits the license use of jobs

© Copyright IBM Corp. 1992, 2013 1

of a single cluster to prevent overuse of the licenses and tracks license use of
individual jobs by matching license checkouts to these jobs. License Scheduler
Basic Edition provides cluster mode features distributed to a single cluster with
one service domain per license feature.

License Scheduler Standard Edition not only provides cluster mode features for a
single cluster, but also provides full License Scheduler functionality, including
support for all modes (cluster mode, project mode, and fast dispatch project mode),
multiple clusters, features and feature groups, multiple service domains per license
feature, and taskman jobs.

Important: A License Scheduler entitlement file (ls.entitlement) is now required
to run License Scheduler Standard Edition. Copy the entitlement file
(ls.entitlement) to the $LSF_ENVDIR directory before starting License Scheduler to
run as Standard Edition.

To install and run License Scheduler Basic Edition, download and install the
License Scheduler packages as described in “Install License Scheduler” on page 7,
but follow any specific steps for installing and configuring License Scheduler Basic
Edition instead of Standard Edition.

License Scheduler Standard Edition is assumed in all License Scheduler
documentation unless it is explicitly stated as describing License Scheduler Basic
Edition.

Glossary
blcollect

The License Scheduler daemon that queries FlexNet licensing software for license
usage. blcollect collects information from lmstat.

You can spread the load of license collection by running the license information
collection daemon on multiple UNIX hosts.

Also called the collector.

bld

The License Scheduler batch daemon.

cluster mode

License tokens are allocated to clusters by License Scheduler, and job scheduling
within each cluster is managed by the local mbatchd. Cluster mode is only available
for License Scheduler version 8.0 and later.

Each license feature can use either cluster mode or project mode, but not both.

lmgrd

The main FlexNet licensing daemon. Usually grouped into service domains inside
License Scheduler.

Introduction

2 Using IBM Platform License Scheduler

project mode

License tokens are allocated to projects by License Scheduler, and job scheduling
for license projects takes place across clusters that follow the license distribution
policy that is configured for each project. Corresponds to License Scheduler version
7.0.5 and earlier.

Each license feature can use either cluster mode or project mode, but not both.

service domain

A group of one or more FlexNet license servers.

You configure the service domain with the license server names and port numbers
that serve licenses to a network.

taskman job

A job that is run by theIBM Platform LSF (LSF) Task Manager (taskman) tool
outside of LSF, but is scheduled by License Scheduler.

token

One license token represents one actual license, and is used by License Scheduler
to track license use and determine which job to dispatch next.

License Scheduler manages license tokens instead of controlling the licenses
directly. After they reserve license tokens, jobs are dispatched, then the application
that needs the license is started. The number of tokens available from LSF
corresponds to the number of licenses available from FlexNet, so if a token is not
available, the job is not dispatched.

Architecture
License Scheduler manages license tokens instead of controlling the licenses
directly. Using License Scheduler, jobs receive a license token before starting the
application. The number of tokens available from IBM Platform LSF (LSF)
corresponds to the number of licenses available from FlexNet, so if a token is not
available, the job does not start. In this way, the number of licenses that are
requested by running jobs does not exceed the number of available licenses.

When a job starts, the application is not aware of License Scheduler. The
application checks out licenses from FlexNet in the usual manner.

Introduction

Chapter 1. Introduction 3

How scheduling policies work

With License Scheduler, LSF gathers information about the licensing requirements
of pending jobs to efficiently distribute available licenses. Other LSF scheduling
policies are independent from License Scheduler policies.

The basic LSF scheduling comes first when starting a job. License Scheduler has no
influence on job scheduling priority. Jobs are considered for dispatch according to
the prioritization policies configured in each cluster.

For example, a job must have a candidate LSF host on which to start before the
License Scheduler fairshare policy (for the license project this job belongs to)
applies.

Other LSF fairshare policies are based on CPU time, run time, and usage. If LSF
fairshare scheduling is configured, LSF determines which user or queue has the
highest priority, then considers other resources. In this way, the other LSF fairshare
policies have priority over License Scheduler.

When the mbatchd is offline

When a cluster is running, the mbatchd maintains a TCP connection to bld. When
the cluster is disconnected (such as when the cluster goes down or is restarted), the
bld removes all information about jobs in the cluster. License Scheduler considers
licenses that are checked out by jobs in a disconnected cluster to be non-LSF use of
licenses.

When mbatchd comes back online, the bld immediately receives updated
information about the number of tokens that are currently distributed to the
cluster.

Figure 1. Daemon interaction

Introduction

4 Using IBM Platform License Scheduler

When the bld is offline

If the mbatchd loses the connection with the bld, the mbatchd cannot get bld’s token
distribution decisions to update its own.

However, because the mbatchd logs token status every minute in
$LSF_TOP/work/data/featureName.ServiceDomainName.dat file, if the connection is
lost, the mbatchd uses the last logged information to schedule jobs.
f3.LanServer1.dat
f3 LanServer1 3 2
p1 50 p2 50

12/3 14:20:38 2 0 2 0 1 0 1 0
12/3 14:21:39 2 0 2 0 1 0 1 0
12/3 14:22:40 3 3 0 0 0 0 0 0
12/3 14:23:41 3 3 0 0 0 0 0 0
12/3 14:24:42 1 0 1 0 2 0 2 0
12/3 14:25:43 1 0 1 0 2 0 2 0
12/3 14:26:44 1 0 1 0 2 0 2 0
12/3 14:27:55 1 0 1 0 2 0 2 0

f3 on LanServer1 has three tokens and two projects. Projects p1 and p2 share
licenses 50:50.

At 14:27:55, the bld dispatched one token to p1, which has 0 in use, 1 free, 0
reserve. At the same time, the bld dispatched two tokens to p2, which has 0 in use,
2 free, and 0 reserve.

The mbatchd continues to schedule jobs that are based on the token distribution
that is logged at 14:27:55 until the connection with the bld is re-established.

Introduction

Chapter 1. Introduction 5

6 Using IBM Platform License Scheduler

Chapter 2. Installing and starting License Scheduler

Install License Scheduler
1. Perform the pre-installation steps.
2. Choose an installation plan:

v UNIX: License Scheduler manages licenses for jobs that run through LSF and
through applications other than LSF.

v Windows, in a mixed cluster:
A Licenser Scheduler installation requires UNIX hosts to run the bld.
Windows hosts in a mixed cluster can run License Scheduler commands.
When you have License Scheduler UNIX hosts working with LSF, run
License Scheduler on Windows hosts as well.

Before you install
IBM Platform LSF ("LSF") must be installed and running before you install License
Scheduler.

Log on to any LSF host as root and use lsid to make sure that the cluster is
running. If you see the message "Cannot open lsf.conf file", verify that the
$LSF_ENVDIR environment variable is set correctly.
To set your LSF environment:
v For csh or tcsh:

% source LSF_TOP/conf/cshrc.lsf

v For sh, ksh, or bash:
$. LSF_TOP/conf/profile.lsf

What the License Scheduler setup script does
v Finds the appropriate lsf.conf for the running cluster.
v Copies the License Scheduler files to your LSF directories:

– $LSF_ENVDIR:
- lsf.licensescheduler

- ls.users

– $LSF_SERVERDIR:
- bld

- blcollect

- globauth

- esub.ls_auth

– $LSF_BINDIR:
- blstat

- blcstat

- blusers

- blinfo

- bladmin

- blstartup

- blhosts

© Copyright IBM Corp. 1992, 2013 7

- blkill

- bltasks

- blparams

- taskman

– $LSF_LIBDIR:
- libglb.a

- libglb.so

- liblic.so
– $LSF_MANDIR: various man pages

v Finds the appropriate lsf.cluster.cluster_name file for the running cluster.
v Creates the following additional directories:

– $LSB_SHAREDIR/cluster_name/db

– $LSB_SHAREDIR/cluster_name/data

v Sets your License Scheduler administrators list in the lsf.licensescheduler file.
v Configures LSF to use License Scheduler.

Install License Scheduler with LSF (UNIX)
You must have write access to the LSF_TOP directories.
1. Log on as root to the installation file server host.
2. Download, uncompress, and extract the License Scheduler packages for the

platforms you need.
For example, for x86 64-bit systems that run Linux kernel 2.6.x and compiled
with glibc 2.3.x:
ftp> get lsf9.1.2_licsched_lnx26-libc23-x64.tar.Z

Make sure that you download the License Scheduler distribution files to the
same directory where you downloaded the LSF product distribution tar files.

3. Extract the distribution file.
For example:
zcat lsf9.1.2_licsched_lnx26-libc23-x64.tar.Z | tar xvf -

4. Change to the extracted distribution directory.
For example:
cd lsf9.1.2_licsched_linux2.6-glibc2.3-x86_64

5. Edit ./setup.config to specify the installation variables you want.
Uncomment the options that you want in the template file, and replace the
example values with your own settings.

Tip: The sample values in the setup.config template file are examples only.
They are not default installation values.

6. Run the setup script as root:
./setup

7. Enter y (yes) to confirm that the path to lsf.conf is correct.
To enter a path to a different lsf.conf, type n (no) and specify the full path to
the lsf.conf file you want to use.

8. Enter y to confirm that the path to lsf.cluster.cluster_name is correct.
To enter a path to a different lsf.cluster.cluster_name file, type n (no) and
specify the full path to the lsf.cluster.cluster_name file you want to use.

Installing and starting License Scheduler

8 Using IBM Platform License Scheduler

9. Enter y to confirm that you want to use the LSF Administrators list for
License Scheduler with LSF.
To enter a different list of administrators for License Scheduler, enter a
space-separated list of administrator user names. You can change your License
Scheduler administrators list later, if necessary.

10. If you are installing License Scheduler Standard Edition, copy the License
Scheduler entitlement file (ls.entitlement) to the $LSF_ENVDIR directory.
If you do not copy the entitlement file to $LSF_ENVDIR before starting License
Scheduler, License Scheduler runs as Basic Edition.

If you are installing License Scheduler Basic Edition, configure License Scheduler
Basic Edition and LSF as described in “Configure License Scheduler Basic Edition”
on page 10.

Install License Scheduler on Windows
You can install License Scheduler on Windows hosts when your cluster includes
both Windows and UNIX hosts.

The License Scheduler Windows Client package includes:
v README
v Commands:

– blstat.exe

– blcstat.exe

– blinfo.exe

– blusers.exe

– bladmin.exe

– blhosts.exe

– blkill.exe

– bltasks.exe

– blparams.exe

– taskman.exe

v lsf.licensescheduler: License Scheduler configuration file
v lsf.conf: LSF configuration file

Install License Scheduler with LSF (Windows)
You must already have LSF installed on all Windows hosts you intend to install
License Scheduler on.

This installation option means that License Scheduler manages licenses for jobs
that are submitted through LSF and through any other applications.

Install License Scheduler on Windows hosts only when your LSF cluster includes
both UNIX and Windows hosts.
1. Download the License Scheduler Client for Windows package.
2. Copy all commands to $LSF_BINDIR (the bin subdirectory in your LSF

installation directory) on your Windows hosts.
3. Copy lsf.licensescheduler to $LSF_ENVDIR.
4. Edit lsf.licensescheduler to suit your License Scheduler Master host

configuration.

Installing and starting License Scheduler

Chapter 2. Installing and starting License Scheduler 9

Troubleshoot
1. If you receive the following message, configure your Windows host name and

IP address in the /etc/hosts file on the master host:
Failed in an LSF library call: Failed in sending/receiving a message:
error 0: The operation completed successfully.

2. To enable the blhosts command, make sure that your Windows host can
resolve the master host IP address correctly.

Configure License Scheduler Basic Edition
Configure LSF and License Scheduler Basic Edition.

Configuring License Scheduler Basic Edition and LSF
Configure LSF to use License Scheduler Basic Edition as a replacement for an elim
to collect external load indices where the external resources are licenses managed
by FlexNet.

The following example assumes that LSF cluster named cluster1 uses an elim for
a license resource named f1.
1. In the LSF environment, disable the existing elim for the license resource by

removing the license feature configuration from the lsf.shared and
lsf.cluster.cluster_name files.
For example, remove the configuration for f1 from the lsf.shared and
lsf.cluster.cluster_name files.

2. Configure the lsf.licenscheduler file with the appropriate hosts and the
license feature.
For example, configure the following sections in lsf.licenscheduler:
Begin Parameters
PORT=1700
HOSTS=hostA
ADMIN=lsadmin
LM_STAT_INTERVAL=15
LMSTAT_PATH=/usr/bin
End Parameters

Begin Clusters
CLUSTERS
cluster1
End Clusters

Begin ServiceDomain
NAME=LanServer
LIC_SERVERS=((19999@hostA))
End ServiceDomain

Begin Feature
NAME=f1
CLUSTER_MODE=Y
CLUSTER_DISTRIBUTION=LanServer(cluster1)
End Feature

3. Start License Scheduler and LSF.
For more details, refer to “Start License Scheduler” on page 12.

From LSF, use bsub to submit a job without a duration requesting the f1 resource.
For example,

bsub -R "rusage[f1=1]" myjob -f "f1 1" -c 19999@hostA -t 20000

Installing and starting License Scheduler

10 Using IBM Platform License Scheduler

Upgrading from License Scheduler Basic Edition to Standard
Edition
If you use License Scheduler Basic Edition and wish to upgrade to License
Scheduler Standard Edition, obtain the License Scheduler entitlement file, then
upgrade License Scheduler as follows:
1. Copy the License Scheduler entitlement file (ls.entitlement) to the LSF_ENVDIR

directory.
2. Restart License Scheduler.

bladmin reconfig

3. Restart the mbatchd on the LSF master host.
badmin mbdrestart

Supported parameters for License Scheduler Basic Edition
The following is a list of specific lsf.licensescheduler parameters that License
Scheduler Basic Edition supports:
v Parameters section:

– ADMIN
– CLUSTER_MODE (License Scheduler Basic Edition only supports

CLUSTER_MODE=Y)
– HEARTBEAT_INTERVAL
– HEARTBEAT_TIMEOUT
– HOSTS
– LIB_CONNTIMEOUT
– LIB_RECVTIMEOUT
– LM_STAT_INTERVAL
– LM_STAT_TIMEOUT
– LMSTAT_PATH
– LOG_EVENT
– LOG_INTERVAL
– LS_DEBUG_BLC
– LS_DEBUG_BLD
– LS_DEBUG_CMD
– LS_LOG_MASK
– LS_MAX_STREAM_FILE_NUMBER
– LS_MAX_STREAM_SIZE
– LS_STREAM_SIZE
– LS_STREAM_FILE
– MBD_HEARTBEAT_INTERVAL
– MBD_REFRESH_INTERVAL
– STANDBY_CONNTIMEOUT
– BLC_HEARTBEAT_FACTOR

v Clusters section:
– CLUSTERS (one cluster only, License Scheduler Basic Edition ignores

additional clusters)
v ServiceDomain section (one ServiceDomain section per license feature only,

License Scheduler Basic Edition ignores additional ServiceDomain sections in the
same license feature):

Installing and starting License Scheduler

Chapter 2. Installing and starting License Scheduler 11

– NAME
– LIC_SERVERS
– LM_STAT_INTERVAL
– LM_STAT_TIMEOUT
– LIC_COLLECTOR

v Feature section:
– NAME
– CLUSTER_MODE (Optional. This parameter may be specified in the

Parameters section instead, but License Scheduler Basic Edition only supports
CLUSTER_MODE=Y)

– FLEX_NAME (Optional. License Scheduler Basic Edition does not support the
specification of multiple FlexNet feature names to combine into a single alias)

– CLUSTER_DISTRIBUTION (License Scheduler Basic Edition supports a single
cluster with a single service domain only, and ignores any additional clusters
or service domains).

– LIC_COLLECTOR

Tip: A specific lsf.licensescheduler configuration template for License Scheduler
Basic Edition is available and contains specifications for all supported parameters.
This file is named lsf.licensescheduler.basic and is included in the License
Scheduler installation package. License Scheduler uses the Standard Edition
configuration file by default, but License Scheduler Basic Edition ignores
unsupported Standard Edition parameters with a warning message. To ensure that
License Scheduler Basic Edition uses only supported parameters and to prevent the
logging of the warning messages, back up the lsf.licensescheduler configuration
file, then move the lsf.licensescheduler.basic file to the $LSF_ENVDIR directory
and rename it to lsf.licensescheduler.

Start License Scheduler
You can configure LSF to start the License Scheduler daemon (bld) on the License
Scheduler host as well as on candidate License Scheduler hosts that can take over
license distribution in the case of a network failure. The LSF LIM daemon starts
bld automatically.
1. Log on as the primary LSF administrator.
2. Set your LSF environment:

v For csh or tcsh:
% source LSF_TOP/conf/cshrc.lsf

v For sh, ksh, or bash:
$. LSF_TOP/conf/profile.lsf

3. In LSF_CONFDIR/lsf.conf, specify a space-separated list of hosts for the
LSF_LIC_SCHED_HOSTS parameters:
LSF_LIC_SCHED_HOSTS="hostname_1 hostname_2 ... hostname_n"

Where:
hostname_1, hostname_2, hostname_n are hosts on which the LSF LIM daemon
starts the License Scheduler daemon. The order of the host names is ignored.

Note: Set the LSF_LIC_SCHED_HOSTS parameter to the same list of candidate
hosts you used in the lsf.licensescheduler HOSTS parameter. The
LSF_LIC_SCHED_HOSTS parameter is not used in any other function.

4. Run lsadmin reconfig to reconfigure the LIM.

Installing and starting License Scheduler

12 Using IBM Platform License Scheduler

5. Use ps -ef to make sure that bld is running on the candidate hosts.
6. Run badmin mbdrestart to restart mbatchd.
7. If you specified a LIC_COLLECTOR name in your service domains, start each

license collector manually:
blcollect -m "host_list" -p lic_scheduler_port -c lic_collector_name

Where:
v host_list

Specifies a space-separated list of License Scheduler candidate hosts to which
license information is sent. Use fully qualified host names.

v lic_scheduler_port

Corresponds to the License Scheduler listening port, which is set in
lsf.licensescheduler.

v lic_collector_name

Specifies the name of the license collector you set for LIC_COLLECTOR in the
service domain section of lsf.licensescheduler.
For example:
blcollect -m "hostD.designcenter_b.com hostA.designcenter_a.com"
-p 9581 -c CenterB

A file named collectors/CenterB is created in your LSF_WORKDIR.

Note:

If you do not specify a license collector name in a License Scheduler service
domain, the master bld host starts a default blcollect.

LSF parameters in License Scheduler
Parameters in lsf.conf that start with LSF_LIC_SCHED are relevant to both LSF
and License Scheduler:
v LSF_LIC_SCHED_HOSTS: LIM starts the License Scheduler daemon (bld) on

candidate License Scheduler hosts.
CAUTION:
You cannot use LSF_LIC_SCHED_HOSTS if your cluster was installed with
UNIFORM_DIRECTORY_PATH or UNIFORM_DIRECTORY_PATH_EGO. Do
not set UNIFORM_DIRECTORY_PATH or
UNIFORM_DIRECTORY_PATH_EGO for new or upgrade installations. They
are for compatibility with earlier versions only.

v LSF_LIC_SCHED_PREEMPT_REQUEUE: Requeues a job whose license is preempted by
License Scheduler. The job is killed and requeued instead of suspended.

v LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE: Releases memory and slot resources of a
License Scheduler job that is suspended. These resources are only available to
pending License Scheduler jobs that request at least one license that is the same
as the suspended job.
Job slots are released by default, but memory resources are also released if
memory preemption is enabled (that is, PREEMPTABLE_RESOURCES = mem is set in
lsb.params).

v LSF_LIC_SCHED_PREEMPT_STOP: Uses job controls to stop a job that is preempted.
When this parameter is set, a UNIX SIGSTOP signal is sent to suspend a job
instead of a UNIX SIGTSTP.

Installing and starting License Scheduler

Chapter 2. Installing and starting License Scheduler 13

|
|
|
|

|
|
|

v LSF_LIC_SCHED_STRICT_PROJECT_NAME: Enforces strict checking of the License
Scheduler project name upon job submission. If the project named is misspelled
(case sensitivity applies), the job is rejected.

LSF parameters used by License Scheduler
v LSB_SHAREDIR: Directory where the job history and accounting logs are kept for

each cluster
v LSF_LOG_MASK: Logging level of error messages for LSF daemons
v LSF_LOGDIR: LSF system log file directory

About submitting jobs
When you submit an LSF job, you must reserve the license with the resource
requirement usage section (bsub -R "rusage..." option).

Tip:

You cannot successfully reserve a license by running bsub -R "select".
v Specify the license token name (same as specifying a shared resource).
v If you use project mode, specify a license project name with the bsub -Lp option.

If you also have LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf and
without configuring a default project for the required feature, the job is rejected.

Tip:

Use the blstat command to view information about the default license project.
v Update resource requirements.

If your queue or job starter scripts request a license that is managed by an LSF
ELIM, you must update the job submission scripts to request that license that
uses the license token name.

Examples:

bsub -R "rusage[AppB=1]" -Lp Lp1 myjob

This command submits a job named myjob to license project Lp1 and requests one
AppB license

bsub -R "rusage[AppC=1]" myjob

This command submits a job named myjob and requests one AppC license.

After configuration changes
If you make configuration changes to License Scheduler, you must reconfigure
License Scheduler to apply the changes. If you make configuration changes to LSF,
you must also reconfigure LSF.
1. Run bld -C to test for configuration errors.
2. Run bladmin reconfig all.
3. If you changed lsf.conf or other LSF configuration files, run badmin

mbdrestart and lsadmin reconfig.

Note:

Installing and starting License Scheduler

14 Using IBM Platform License Scheduler

After certain License Scheduler configuration changes, you must run
badmin mbdrestart for the changes to take effect. The following configuration
changes require you to run badmin mbdrestart:
v Project changes, additions, or deletions
v Feature changes, additions, or deletions, including mode changes
v Cluster locations changes

You must also run lsadmin reconfig for any changes to the LIM to take effect
(for example, if you changed LSF_LIC_SCHED_HOSTS).

Add a cluster to License Scheduler
You must be a License Scheduler administrator.

You can add a new cluster to an existing License Scheduler implementation.
1. Download the License Scheduler package.

Note: Acquire the same version of master bld binary files and other
architectures that are used in existing member clusters.

2. Install the License Scheduler package on the new cluster.
3. Use an existing lsf.licensescheduler from $LSF_ENVDIR of another cluster

with the same bld master.
4. Add new cluster name to the Clusters section of lsf.licensescheduler.
5. Add or modify license distribution policies that are defined in

lsf.licensescheduler.
6. Maintain one central lsf.licensescheduler file and have all the clusters access

it.

Remember:

The lsf.licensescheduler file in each cluster must be identical.
You can accomplish this using either of the following methods:
v Create a symbolic link from each cluster’s $LSF_ENVDIR to the central

lsf.licensescheduler file.
v Use a CRON-based synchronization script to synchronize the changes that

are made from the central lsf.licensescheduler file to the corresponding
lsf.licensescheduler files in all the clusters.

7. Check that there is no firewall or network issue with communication from the
PORT in the lsf.licensescheduler file

8. Run bladmin reconfig on all hosts where bld is running.
9. On the newly added cluster, run lsadmin limrestart and then badmin

mbdrestart.

Configure multiple administrators
The primary License Scheduler admin account must have write permissions in the
LSF working directory of the primary LSF admin account.

The administrator account uses a list of users that you specified when you
installed License Scheduler. Edit this parameter if you want to add or change
administrators. The first user name in the list is the primary License Scheduler

Installing and starting License Scheduler

Chapter 2. Installing and starting License Scheduler 15

administrator. By default, all the working files and directories that are created by
License Scheduler are owned by the primary License Scheduler account.
1. Log on as the primary License Scheduler administrator.
2. In lsf.licensescheduler, edit the ADMIN parameter if you want to change the

License Scheduler administrator. You can specify multiple administrators that
are separated by spaces.
For example:
ADMIN = lsfadmin user1 user2 root

3. Run bld -C to test for configuration errors.
4. Run bladmin reconfig all to apply your changes.

Upgrade License Scheduler
You must have License Scheduler installed before you can upgrade. You must be a
cluster administrator.

You can upgrade to a new version of License Scheduler without uninstalling and
reinstalling.
1. Download the new version of the License Scheduler distribution tar files.
2. Deactivate all queues.

Deactivating all queues pends any running jobs and prevents new jobs from
being dispatched.
badmin qinact all

3. If you have the IBM Platform Application Center installed, shut it down.
pmcadmin stop

4. Back up your existing LSF_CONFDIR, LSB_CONFDIR, and LSB_SHAREDIR according
to the procedures at your site.

5. Optional. To use the fast dispatch project mode in License Scheduler, upgrade
LSF to version higher than 9.1.1. After completing the upgrade, restart LSF.

6. Use the setup script to upgrade License Scheduler.
a. Source cshrc.lsf or profile.lsf in old LSF cluster.
b. Navigate to the location of your tar files and extract.
c. Run the setup script.

7. If you are installing License Scheduler Standard Edition, copy the License
Scheduler entitlement file (ls.entitlement) to the $LSF_ENVDIR directory. If
you do not copy the entitlement file to $LSF_ENVDIR before starting License
Scheduler, License Scheduler runs as Basic Edition.

8. Start License Scheduler.
a. Source cshrc.lsf or profile.lsf.
b. Run bladmin reconfig.
c. Run ps -ef to make sure the bld is running on the candidate hosts.
d. Run badmin mbdrestart.
e. Activate the queues.

badmin qact all

9. If you have the IBM Platform Application Center installed, restart it.
pmcadmin start

Note:

Installing and starting License Scheduler

16 Using IBM Platform License Scheduler

|
|
|
|

IBM Platform Application Center version 8.0.1 and later displays License
Scheduler workload for both project mode and cluster mode.

Firewalls
Configuration for LSF, License Scheduler, and taskman interoperability.

Set up firewall communication
The mbatchd and bld listening ports (inbound connections) must be open on either
side of the firewall.
v mbatchd: Set by LSB_MBD_PORT in lsf.conf

v bld: Set by PORT in lsf.licensescheduler

v If a firewall is between the mbatchd and bld hosts, both listening ports must be
open.

v If a firewall is between bld and blcollect hosts (for example, blcollect is
configured to run locally on the license servers and bld is on the LSF master
host), the bld listening port must be open.

v If a firewall is between taskman and bld (where jobs use taskman to interface
with License Scheduler), the bld listening port must be open.

Installing and starting License Scheduler

Chapter 2. Installing and starting License Scheduler 17

Installing and starting License Scheduler

18 Using IBM Platform License Scheduler

Chapter 3. License Scheduler concepts

License Scheduler modes
When you configure your installation of License Scheduler, you must choose which
of project mode and cluster mode best suits your needs for each license you use.
Both project mode and cluster mode can be configured in one installation,
however, all different licenses that are required by a job must belong to the same
mode.

cluster mode

Distributes license tokens to clusters, where LSF scheduling takes over.

Cluster mode emphasizes high utilization of license tokens over other
considerations such as ownership. License ownership and sharing can still be
configured, but within each cluster instead of across multiple clusters.
Preemption of jobs (and licenses) also occurs within each cluster instead of
across clusters.

License tokens are reused by LSF when a job finishes, without waiting for
confirmation from lmstat that license tokens are available and reported in the
next blcollect cycle. This results in higher license utilization for short jobs.

Cluster mode was introduced in License Scheduler 8.0.

project mode

Distributes license token to projects configured across all clusters.

Project mode emphasizes ownership of license tokens by specific projects
which span multiple clusters. When License Scheduler is running in project
mode, License Scheduler checks demand from license owners across all LSF

© Copyright IBM Corp. 1992, 2013 19

clusters before allocating license tokens in project mode. The process of
collecting and evaluating demand for all projects in all clusters slows down
each scheduling cycle. License tokens are distributed in the next scheduling
cycle after lmstat confirms license token availability.

Project mode was the only choice available before License Scheduler 8.0.

Difference between cluster mode and project mode

The following figure illustrates license utilization in cluster mode for short jobs
with the corresponding lmstat reporting times:

In cluster mode, when one job finishes running, the next job gets its license
immediately without having to wait for the next lmstat interval. For example, four
jobs that require license 2 are able to run without waiting for lmstat to report
token distribution.

The following figure illustrates license utilization in project mode for short jobs
with the lmstat reporting times:

In project mode, each job must wait for lmstat to report token distribution before
it can get a license and start running. In this example, three jobs that require
license 2 are able to start within the lmstat intervals illustrated.

When to use cluster mode

Cluster mode is most appropriate for your needs if:
v Your primary goal is to maximize license use.
v Ownership of licenses is a secondary consideration.
v Many jobs are short relative to the blcollect cycle (60 seconds by default, set by

LM_STAT_INTERVAL).

License Scheduler concepts

20 Using IBM Platform License Scheduler

When to use project mode

Project mode is most appropriate for your needs if the following applies:
v Your primary goal is to ensure ownership of the group.
v Maximizing license use is a secondary consideration.
v Most jobs are long relative to the blcollect cycle (60 seconds by default, set by

LM_STAT_INTERVAL).

Project groups
When you are configuring your installation of License Scheduler in project mode,
you can choose to configure projects, or extend your project configuration further
to form hierarchical project groups.

Project groups pool multiple service domains together and treat them as one
source for licenses, and distribute them in a hierarchical fairshare tree. The leaves
of the policy tree are the license projects that jobs can belong to. Each project group
in the tree has a set of values, including shares and limits.

License ownership is applied at the leaf level; that is, on individual license projects.
Ownership of a given internal node equals to sum of the ownership of all of its
direct children.

Each feature has its own hierarchical group, but features can share hierarchy. The
hierarchical scheduling is done per feature across service domains.

projects

Projects alone apply one distribution policy within one service domain. The
same local distribution policy can be applied to more than one service domain,
but is implemented locally.

groups of projects

Groups of projects apply one distribution policy within one service domain,
but assign shares and ownership to groups of projects for greater flexibility.
With group license ownership, projects trigger preemption either when the
project is using fewer licenses than it owns or when the group to which the
project belongs is using fewer licenses than the group owns.

project groups

Projects groups apply one distribution policy across multiple service domains
following the configured hierarchical structure. You can also use project groups
to apply hard limits to the number of licenses that are distributed to each
project.

After configuration, the same project group hierarchy can be used for more
than one feature.

When to use groups of projects

Grouping projects together in project mode is most appropriate for your needs if:
v Licenses are owned at multiple levels, for example by a department and also by

projects within the department.
v License ownership is within one service domain. As for ungrouped projects,

distribution policies are implemented locally for groups of projects.

License Scheduler concepts

Chapter 3. License Scheduler concepts 21

When to use project groups

Extending your configuration to include project groups is most appropriate for
your needs if:
v License ownership spans service domains.
v One distribution policy must be applied across several service domains.
v Project limits must be applied across clusters.

Note:

If required, use Platform LSF to configure license project limits within one LSF
cluster.

Service domains in License Scheduler
A service domain is a group of one or more FlexNet license servers. License
Scheduler manages the scheduling of the license tokens, but the license server
actually supplies the licenses. You configure the service domain with the license
server names and port numbers that serve licenses to a network.
v LAN: a service domain that serves licenses to a single cluster
v WAN: a sevice domain that serves licenses to multiple clusters

License Scheduler assumes that any license in the service domain is available to
any user who can receive a token from License Scheduler. Therefore, every user
that is associated with a project specified in the distribution policy must meet the
following requirements:
v The user is able to make a network connection to every FlexNet license server

host in the service domain.
v The user environment is configured with permissions to check out the license

from every FlexNet license server host in the service domain.

You must configure at least one service domain for License Scheduler. It groups
FlexNet license server hosts that serve licenses to LSF jobs and is used when you
define a policy for sharing software licenses among your projects.

If a FlexNet license server host is not part of a License Scheduler service domain,
its licenses are not managed by License Scheduler (the license distribution policies
you configure in LSF do not apply to these licenses and usage of these licenses
does not influence LSF scheduling decisions).

Service domain locality

You can use license feature locality to limit features from different service domains
to a specific cluster so that License Scheduler does not grant tokens to jobs from
license that legally cannot be used on the cluster that requested the token. The
LAN service domains that are used in cluster mode are configured with
single-cluster locality.

Project mode

In project mode, a cluster can access the same license feature from multiple service
domains.

License Scheduler concepts

22 Using IBM Platform License Scheduler

If your license servers restrict the serving of license tokens to specific geographical
locations, use LOCAL_TO to specify the locality of a license token for any features
that cannot be shared across all the locations. This parameter avoids having to
define different distribution and allocation policies for different service domains,
and allows hierarchical project group configurations.

To use License Scheduler tokens in project mode, a job submission must specify the
-Lp (license project) option. The project must be defined for the requested feature
in lsf.licensescheduler.

Cluster mode

In cluster mode, each license feature in a cluster can access a single license feature
from at most one WAN and one LAN service domain.

License Scheduler does not control application checkout behavior. If the same
license is available from both the LAN and WAN service domains, License
Scheduler expects jobs to try to obtain the license from the LAN first.

Parallel jobs

When LSF dispatches a parallel job, License Scheduler attempts to check out
user@host keys in the parallel job constructed using the user name and all
execution host names, and merges the corresponding checkout information on the
service domain if found.

For example, in project mode, for feature F1 with two projects (P1 and P2) in
service domain sd1, with ten tokens, a parallel job is dispatched to four execution
hosts using the following command:

bsub -n 4 -Lp P1 -R "rusage[F1=4]" mycmd

The job on each execution host checks out one F1 license from the sd1 service
domain. If the four execution hosts are hostA, hostB, hostC, and hostD, there are
checkout keys for user@hostA, user@hostB, user@hostC, and user@hostD, and each
entry contributes corresponds with one token checked out. These tokens all merge
into data for the P1 project in the F1 feature. Therefore, running blstat displays the
following information for the F1 feature:
FEATURE: F1
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 4 TOTAL_RESERVE: 0 TOTAL_FREE: 6 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
P1 50.0 % 0 4 0 1 0
P2 50.0 % 0 0 0 5 0

The four checkout keys from the four execution hosts are merged into the P1
project.

If MERGE_BY_SERVICE_DOMAIN=Y is defined, License Scheduler also merges multiple
user@host data for parallel jobs across different service domains.

For example, if you have the same setup as the previous example, but with an
additional service domain sd2 also with two projects (P1 and P2) and ten tokens,
and you have MERGE_BY_SERVICE_DOMAIN=Y defined, running blstat displays the
following information for the F1 feature:

License Scheduler concepts

Chapter 3. License Scheduler concepts 23

blstat
FEATURE: F1
SERVICE_DOMAIN: sd1
TOTAL_INUSE: 2 TOTAL_RESERVE: 0 TOTAL_FREE: 8 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
P1 50.0 % 0 2 0 3 0
P2 50.0 % 0 0 0 5 0
SERVICE_DOMAIN: sd2
TOTAL_INUSE: 2 TOTAL_RESERVE: 0 TOTAL_FREE: 8 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
P1 50.0 % 0 2 0 3 0
P2 50.0 % 0 0 0 5 0

Two checkout keys are merged into the P1 project in the sd1 domain, while two
checkout keys are merged into the P1 project under the sd2 domain.

If CHECKOUT_FROM_FIRST_HOST_ONLY=Y is defined, License Scheduler only considers
user@host information for the first execution host of a parallel job when merging
the license usage data. Setting in individual Feature sections overrides the global
setting in the Parameters section.

If a feature has multiple Feature sections (using LOCAL_TO), each section must have
the same setting for CHECKOUT_FROM_FIRST_HOST_ONLY.

Distribution policies
The most important part of License Scheduler is license token distribution. The
license distribution policy determines how license tokens are shared among
projects or clusters. Whenever there is competition, the configured share
assignment determines the portion of license tokens each project or cluster is
entitled to.

We refer to both licenses and license tokens because License Scheduler does not
control licenses directly. Instead, it controls the dispatch of jobs that require
licenses that are submitted through LSF or taskman by tracking license tokens.

Total license tokens

The total number of license tokens that are managed by License Scheduler for a
single feature in one service domain depends on the following factors:
v The number of active license servers in the service domain
v The number of licenses that are checked out by applications that are not

managed by LSF

License shares

License shares that are assigned in the distribution policy determine what portion
of total licenses a project (in project mode) or cluster (in cluster mode) receives.
Each project or cluster able to use a license feature must have a share of the license
feature in the service domain.

The formula for converting a number of shares to a number of licenses for any
license feature is:
(shares assigned to project or cluster)
______________________________ x (total number of licenses)
(sum of all shares assigned)

License Scheduler concepts

24 Using IBM Platform License Scheduler

The number of shares that are assigned to a license project or cluster is only
meaningful when you compare it to the number assigned to other projects or
clusters, or to the total number of shares.

When there are no jobs in the system, each project or cluster is assigned license
tokens that are based on share assignments.

Cluster mode distribution policies
static

A portion of the total licenses is allocated to the cluster based on the
configured share. The amount is static, and does not depend on the workload
in the system.

dynamic

Shares of the total licenses are assigned to each cluster, along with a buffer
size. The configured shares set the number of licenses each cluster receives
initially, but this number is adjusted regularly based on demand from the
cluster.

License distribution changes whenever a cluster requests an allocation update,
by default every 15 seconds. In each update, the allocation can increase by as
much as the buffer size. There is no restriction on decreasing cluster allocation.

When dynamic license distribution is used in cluster mode, minimum and
maximum allocation values can be configured for each cluster. The minimum
allocation is like the number of non-shared licenses for project mode, as this
number of tokens is reserved for the exclusive use of the cluster.

If the minimum value configured exceeds the share assignment for the cluster,
only the assigned share is reserved for the cluster.

Cluster shares take precedence over minimum allocations configured. If the
minimum allocation exceeds the cluster's share of the total tokens, a cluster's
allocation as given by bld may be less than the configured minimum
allocation.

guarantees within a cluster

Guaranteed shares of licenses are assigned to projects within a cluster that use
LSF guarantee-type SLAs. Optionally, sharing of guaranteed licenses not in use
can be configured.

Guarantees are like ownership for cluster mode, and can be used with both
static and dynamic distribution policies.

Note:

Guarantee-type SLAs are only available in LSF version 8.0 or newer.

When to use static license distribution

Configure shares for all license features in cluster mode. Static license distribution
is the basic license distribution policy, and is built on by adding more
configuration.

The basic static configuration can meet your needs if the demand for licenses
across clusters is predictable and unchanging, or licenses are strictly owned by
clusters, or you always have extra licenses.

License Scheduler concepts

Chapter 3. License Scheduler concepts 25

When to use dynamic license distribution

Dynamic license allocation can meet your needs if the demand for licenses changes
across clusters.

When to use LSF guarantee SLAs with License Scheduler

Configuring guarantee SLAs within LSF clusters can meet your needs if the
licenses within a cluster are owned, and used either preferentially or exclusively by
the license owners.

Project mode distribution policies
fairshare

Shares of the total licenses are assigned to each license project.

Unused licenses are shared wherever there is demand, however, when demand
exceeds the number of licenses, share assignments are followed. Jobs are not
preempted to redistribute licenses; instead licenses are redistributed when jobs
finish running.

ownership and preemption

Shares of the total licenses are assigned to each license project. Owned shares
of licenses are also assigned.

Unused licenses are shared wherever there is demand, however, when demand
exceeds the number of licenses, the owned share is reclaimed using
preemption.

Preemption occurs only while the specified number of owned licenses are not
yet in use, and no free licenses are available. Once all owned licenses are used,
License Scheduler waits for licenses to become free (instead of using
preemption) and then distributes more tokens until the share is reached.

Jobs that are preempted by License Scheduler are automatically resumed once
licenses become available.

By default, LSF releases the job slot of a suspended job when License
Scheduler preempts the license from the job.

Note:

For License Scheduler to give a license token to another project, the
applications must be able to release their licenses upon job suspension.

active ownership

Active ownership allows ownership to automatically adjust based on project
activity. Ownership is expressed as a percent of the total ownership for active
projects. The actual ownership for each project decreases as more projects
become active. Set percentage ownership values to total more than 100% to
benefit from active ownership.

non-shared licenses

Some licenses are designated as non-shared, and are reserved for exclusive use
instead of being shared when not in use.

License Scheduler concepts

26 Using IBM Platform License Scheduler

The number of non-shared licenses is contained by the number of owned
licenses, but this number is not included in share calculations for the project.
To designate some licenses as non-shared, add the non-shared number to both
the owned and the non-shared values.

When to use fairshare with project mode

Configure fairshare for all license features in project mode. Fairshare is the basic
license distribution policy, and is built on by adding additional configuration.

The basic fairshare configuration can meet your needs without configuring
additional distribution policies if the licenses are assigned to specific license
projects, but not strictly owned.
v

When to add ownership (and preemption)

Configure licenses as owned when:
v Licenses are owned by licenses projects, but can be loaned out when not in use.
v Maximizing license usage and license ownership are both important

considerations. Loaned licenses must be returned to the owners as quickly as
possible when needed (using preemption).

v Jobs borrowing licenses can be preempted.

When to add active ownership

Configure active ownership for owned licenses when:
v Ownership values are dynamic instead of being fixed values, and usually

decrease as more projects actively seek licenses.

When to add non-shared licenses

Configure licenses as non-shared when:
v Licenses are owned.
v Licenses are used exclusively by the owners.
v Having licenses always available to the owners is more important than

maximizing license use.

Project mode preemption
Preemption occurs only when there are no free licenses. During preemption, a
project releases a borrowed license to the project that owns the license (and now
has demand).

Jobs that use licenses that support job suspension releas their tokens and
automatically resume from where they were suspended. Jobs that use licenses that
do not support suspension are killed and restarted from the beginning.

Preemption applies only to project mode, and depending on your configuration
takes the following into consideration:
v runtime (a job that has the smallest run time gets preempted first, in general)
v fairshare settings
v ownership

License Scheduler concepts

Chapter 3. License Scheduler concepts 27

v priority
v minimal job preemption

Depending on how your projects are set up (whether they are all at the same level
or not), your preemption is either flat or hierarchical.

Basic preemption with projects configured
When preemption occurs, License Scheduler calculates token usage for each
project. The calculation considers tokens in use, tokens that are required, and token
ownership value.

Based on the token usage, License Scheduler determines the projects that require
tokens, and the projects that have too many.
v Jobs belonging to projects that require tokens are scheduled first, ordered by

project fairshare settings.
v Jobs belonging to projects with extra tokens are preempted first, if needed,

ordered by project fairshare settings and the length of time each job is running.

With PRIORITY

If project PRIORITY is configured in the Project section, the sort order of projects is
based on priority, where a higher priority project is preempted last.

With PREEMPT_ORDER

If PREEMPT_ORDER is set to BY_OWNERSHIP in the Feature section, the projects are
sorted by ownership.
v Projects with the highest ownership are scheduled first.
v Projects with the smallest ownership are preempted first.

This setting overrides basic preemption and PRIORITY.

With ENABLE_MINJOB_PREEMPTION

If ENABLE_MINJOB_PREEMPTION=Y, the number of preempted jobs is minimized.
Projects with extra tokens are sorted by PRIORITY (if configured) or fairshare. The
jobs are then sorted by RUSAGE.

Jobs with higher RUSAGE are preempted first to minimize the number of jobs
preempted.

This setting is used in addition to basic preemption or PRIORITY.

Hierarchical preemption with project groups configured
When project groups are configured, introducing a hierarchy into the project
configuration, hierarchical preemption applies.

There are two methods of hierarchical preemption:
1. Top-down (default): Preemption occurs between cousins rather than siblings.

The result is to balance preemption between the entire hierarchy of projects.
2. Bottom-up (if LS_PREEMPT_PEER=Y): Siblings can preempt each other. The result

is to balance preemption within a family of projects first.

License Scheduler concepts

28 Using IBM Platform License Scheduler

For example, your projects are set up as follows:

In top-down preemption, if P8 needs a token, it preempts from P1, P2, or P3 (who
are more distant relations), not from P6 or P7 (siblings of P8).

In bottom-up preemption, P8 preempts instead from its siblings (P6 or P7).

Limits

Hierarchical preemption is also affected by any limits that are placed on the
projects. If a limit is already reached (at any level of the hierarchy), License
Scheduler considers the next possible node for preemption instead.

Preemption restrictions
A job cannot be preempted if:
v Preemption is restricted by a parameter such as: MAX_JOB_PREEMPT,

PREEMPT_RESERVE, LM_REMOVE_INTERVAL, or LS_WAIT_TO_PREEMPT

v The preemptable job's server is not the current checking service domain.
v The job was submitted with a time duration and this time duration is expired.

Both LSF jobs and taskman jobs using licenses that are managed by License
Scheduler can be preempted. To ensure that lower priority jobs are not preempted
too many times, maximum preemption time limits can be enabled with
LS_ENABLE_MAX_PREEMPT.

License Scheduler taskman job preemption limits are controlled by the parameter
LS_MAX_TASKMAN_PREEMPT in lsf.licensescheduler.

LSF preemption with License Scheduler preemption
For LSF jobs the parameter MAX_JOB_PREEMPT sets the maximum number of times a
job can be preempted. MAX_JOB_PREEMPT can be defined in lsb.params, lsb.queues,
or lsb.applications, with the application setting overriding the queue setting and
the queue setting overriding the cluster-wide lsb.params definition.

Jobs belonging to a license project that has ownership in License Scheduler can
trigger preemption even when no more slots are available in LSF. Configured
together with LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=Y in lsf.conf, license job
preemption works together with LSF slot-based preemption. Configured together
PREEMPTABLE_RESOURCES=mem in lsb.params and

License Scheduler concepts

Chapter 3. License Scheduler concepts 29

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=Y in lsf.conf, license job preemption works
together with LSF memory resource preemption.

Example

Project proj1 has ownership of 3 of the license AppX.

MXJ = 5, and LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE=Y is configured in lsf.conf.

Five jobs are submitted and started with AppX, in proj2. Then, two jobs are
submitted to proj1, and pend waiting for a AppX license token. Although the slots
are full, the request is sent to License Scheduler, which recognizes the ownership
and preempts two jobs in proj2. The jobs are suspended, both their licenses and
slots are released, and the two jobs in proj1 can run.

LSF JOB_CONTROLS configuration

If the LSF administrator defines JOB_CONTROLS in lsb.queues so that job controls
(such as the signal SIGTSTP) take effect when License Scheduler preemption
occurs, LIC_SCHED_PREEMPT_STOP=Y in lsf.conf must also be defined for License
Scheduler preemption to work.

License usage with FlexNet
License Scheduler works differently with different types of applications, depending
on how the application uses the license features and whether these license features
are known at the start of the job.

Known license requirements
For many applications, all license features needed to run its jobs are known before
the start of the job.
1. The job submission passes a license usage request to the LSF cluster.
2. LSF sends a query to License Scheduler to see if the license token can be given

to the application.
3. When License Scheduler grants permission, LSF gives authorization to the user

application.
4. The user application sends a request to FlexNet to check out a license.

Unknown license requirements
Some applications require an initial feature license to start a job and more feature
or subfeature licenses during job execution. The user who submits the job knows
the main license feature that is needed to start the job, but might not know the
additional feature names or the number of more features required. This additional
license feature not specified at job submission is considered unknown license use.

At any time, the user application can either make a request to LSF without
requesting verification from License Scheduler, or it can bypass LSF entirely by
sending the license request directly to the FlexNet license servers.
1. The user application makes a request to LSF without requesting verification

from License Scheduler.
2. LSF gives authorization to the user application because the request did not

specify the need for License Scheduler verification.
3. The user application sends a request to FlexNet to check out a license.

License Scheduler concepts

30 Using IBM Platform License Scheduler

Project mode
Known license requirements

Project mode supports known license requirements that are specified in the rusage
section of job submissions. By default, each license feature is reserved for the full
length of the job.

Optionally, use the Feature section parameter DYNAMIC=Y to enable the use of
duration in the rusage string, and release license features after a specified duration.

Unknown license requirements

Unknown license requirements not in the rusage string are counted as jobs not
managed by LSF, and license distribution policies are not applied by default.

Optionally, license requirements not included in the rusage string can be tracked as
part of the managed workload in project mode if there is at least one license
feature that is specified in the job’s rusage string. Set the parameter
ENABLE_DYNAMIC_RUSAGE=Y in the Feature section to apply project distribution
policies even when license rusage is not specified.

Cluster mode
Known license requirements

Cluster mode supports known license requirements that are specified in the rusage
section of job submissions. Each license feature is reserved for the full length of the
job.

In cluster mode, license requirements cannot be submitted with duration specified.
If you have known license requirements for only a predetermined part of your job,
you must choose between including them in the rusage and reserving for the entire
job, or leaving them as unknown requirements.

Unknown license requirements

Unknown license requirements not in the rusage string are counted as part of the
managed workload in cluster mode. License features not in the rusage string are
not reserved for the job, however, distribution policies do apply. This behavior is
equivalent to ENABLE_DYNAMIC_RUSAGE=Y in project mode.

License Scheduler concepts

Chapter 3. License Scheduler concepts 31

32 Using IBM Platform License Scheduler

Chapter 4. Configuring License Scheduler

Configure cluster mode
Use cluster mode to distribute licenses across LSF clusters, leaving the scheduler
for each LSF cluster to schedule jobs, allocate licenses to projects within the cluster,
and preempt jobs.

Configure parameters
1. Cluster mode can be set globally, or for individual license features. Set

individually when using cluster mode for some features and project mode for
some features.
a. If you are using cluster mode for all license features, define CLUSTER_MODE=Y

in the Parameters section of lsf.licensescheduler.
b. If you are using cluster mode for some license features, define

CLUSTER_MODE=Y for individual license features in the Feature section of
lsf.licensescheduler.
The Feature section setting of CLUSTER_MODE overrides the global Parameter
section setting.

2. List the License Scheduler hosts.
By default with an LSF installation, the HOSTS parameter is set to the
LSF_MASTER_LIST.
v List the hosts in order from most preferred to least preferred. The first host is

the master license scheduler host.
v Specify a fully qualified host name such as hostX.mycompany.com unless all

your License Scheduler clients run in the same DNS domain.
HOSTS=host1 host2

3. Specify the data collection frequency between License Scheduler and FlexNet.
The default is 60 seconds.
LM_STAT_INTERVAL=seconds

4. Specify the path to the FlexNet command lmstat.
For example, if lmstat is in /etc/flexlm/bin:
LMSTAT_PATH=/etc/flexlm/bin

Configure clusters
Configure the clusters that are permitted to use License Scheduler in the Clusters
section of the lsf.licensescheduler file.

Configuring the clusters is only required if you are using more than one cluster.

In the Clusters section, list all clusters that can use License Scheduler.
For example:
Begin Clusters

CLUSTERS

cluster1

cluster2

End Clusters

© Copyright IBM Corp. 1992, 2013 33

Cluster mode service domains
A service domain is a group of one or more FlexNet license servers. License
Scheduler manages the scheduling of the license tokens, but the license server
actually supplies the licenses.

In cluster mode, each cluster can access licenses from one WAN and one LAN
service domain.

License Scheduler does not control application checkout behavior. If the same
license is available from both the LAN and WAN service domains, License
Scheduler expects jobs to try to obtain the license from the LAN first.

Configure ServiceDomain sections
You configure each service domain, with the license server names and port
numbers that serve licenses to a network, in the ServiceDomain section of the
lsf.licensescheduler file.

Whether the service domain is a WAN or LAN service domain is specified later in
the Feature section.
1. Add a ServiceDomain section, and define NAME for each service domain.

For example:
Begin ServiceDomain
NAME=DesignCenterA
End ServiceDomain

2. Specify the FlexNet license server hosts for that domain, including the host
name and FlexNet port number.
For example:
Begin ServiceDomain
NAME=DesignCenterA
LIC_SERVERS=((1700@hostA))
End ServiceDomain

For multiple license servers:
LIC_SERVERS=((1700@hostA)(1700@hostB))

For redundant servers, the parentheses are used to group the three hosts that
share the same license.dat file:
LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

Configuring License Scheduler

34 Using IBM Platform License Scheduler

Note:

If FlexNet uses a port from the default range, you can specify the host name
without the port number. See the FlexNet documentation for the values of the
default port range.

LIC_SERVERS=((@hostA))

Configure remote FlexNet license server hosts
The remote FlexNet license server hosts must have lmutil (or lmstat) in the
LMSTAT_PATH directory before configuring these hosts with License Scheduler.

The license collector (blcollect) is a multi-threaded daemon that queries all
FlexNet license servers under License Scheduler for license usage information. The
license collector calls lmutil (or lmstat) to collect information from each license
server. When there are both local and remote license servers (that is, license servers
that are in a different subnet from the host running blcollect), the threads that
collect information from the remote license servers are slower than the threads that
collect information from local license servers.

If there are remote license servers, designate at least one remote license server
within each domain as a remote agent host. The license collector connects to the
remote agent host and calls lmstat on the remote agent host and gets license
information from all license servers that the remote agent host serves. The remote
agent host and the remote license servers should be in the same domain to
improve access.
1. Select the connection method for the license collector to connect to remote

hosts.
License Scheduler supports the use of ssh, rsh, and lsrun to connect to remote
hosts. If using lsrun as the connection method, the agent host must be a server
host in the LSF cluster and RES must be started on this host. Otherwise, if
using ssh or rsh as the connection method, the agent host does not have to be
a server host in the LSF cluster.
a. In the Parameters section, define the REMOTE_LMSTAT_PROTOCOL parameter

and specify the connection command (and command options, if required) to
connect to remote servers.
REMOTE_LMSTAT_PROTOCOL=ssh [ssh_command_options] |
rsh [rsh_command_options] | lsrun [lsrun_command_options]
The default connection method is ssh with no command options. License
Scheduler uses the specified command (and optional command options) to
connect to the agent host. License Scheduler automatically appends the
name of the agent host to the command, so there is no need to specify the
host with the command.

Note: License Scheduler does not validate the specified command, so you
must ensure that you correctly specify the command. Any connection errors
are noted in the blcollect log file.

b. If the connection method is ssh or rsh, verify that this connection method is
configured so the host running the license collector can connect to remote
hosts without specifying a password.

2. Define remote license servers and remote agent hosts.
In the ServiceDomain section, define the REMOTE_LMSTAT_SERVERS parameter:
REMOTE_LMSTAT_SERVERS=host_name[(host_name ...)] [host_name[(host_name ...)] ...]

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 35

Specify a remote agent host, then any license servers that it serves in
parentheses. The remote agent host and the license servers that it serves must
be in the same subnet. If you specify a remote agent host by itself without any
license servers (for example, REMOTE_LMSTAT_SERVERS=hostA), the remote agent
host is considered to be a remote license server with itself as the remote agent
host. That is, the license collector connects to the remote agent host and only
gets license information on the remote agent host. You can specify multiple
remote agent hosts to serve multiple subnets, or multiple remote agent hosts to
serve specific license servers within the same subnet.
Any host that you specify here must be a license server defined in LIC_SERVERS.
Any hosts defined in REMOTE_LMSTAT_SERVERS that are not also defined in
LIC_SERVERS are ignored.
The following examples assume that the license collector (blcollect) is running
on LShost1. That is, the following parameter is specified in the Parameters
section:
Begin Parameters
...
HOSTS=LShost1
...
End Parameters

v One local license server (hostA) and one remote license server (hostB):
LIC_SERVERS=((1700@hostA)(1700@hostB))
REMOTE_LMSTAT_SERVERS=hostB

– The license collector runs lmutil (or lmstat) directly on hostA to get
license information on hostA.

– Because hostB is defined without additional license servers, hostB is a
remote agent host that only serves itself. The license collector connects to
hostB (using the command specified by the REMOTE_LMSTAT_PROTOCOL
parameter) and runs lmstat to get license information on 1700@hostB.

v One local license server (hostA), one remote agent host (hostB) that serves
one remote license server (hostC), and one remote agent host (hostD) that
serves two remote license servers (hostE and hostF):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE)(1700@hostF))
REMOTE_LMSTAT_SERVERS=hostB(hostC) hostD(hostE hostF)

– The license collector runs lmutil (or lmstat) directly to get license
information from 1700@hostA, 1700@hostB, and 1700@hostD.

– The license collector connects to hostB (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostC.
hostB and hostC should be in the same subnet to improve access.

– The license collector connects to hostD (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil (or lmstat) to get
license information on 1700@hostE and 1700@hostF.
hostD, hostE, and hostF should be in the same subnet to improve access.

v One local license server (hostA), one remote license server (hostB), and one
remote agent host (hostC) that serves two remote license servers (hostD and
hostE):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE))
REMOTE_LMSTAT_SERVERS=hostB hostC(hostD hostE)

– The license collector runs lmutil (or lmstat) directly to get license
information on 1700@hostA and 1700@hostC.

Configuring License Scheduler

36 Using IBM Platform License Scheduler

– The license collector connects to hostB (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostB.

– The license collector connects to hostC (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostD and 1700@hostE.
hostC, hostD, and hostE should be in the same subnet to improve access.

Configure LAN service domain
You configure LAN service domains in the Feature section of
lsf.licensescheduler. Only a single cluster and service domain can be specified in
each LAN Feature section. Licenses from the LAN service domain are statically
allocated to the cluster.

In the Feature section, set
CLUSTER_DISTRIBUTION=service_domain(cluster_name share)

Use the service domain name that is defined in the ServiceDomain section.
For example:
Begin Feature
NAME=verilog
CLUSTER_DISTRIBUTION=MyLanServer(tokyo_cluster 1)
End Feature

Configure WAN service domain
WAN configuration includes all clusters that are sharing the WAN service domain.
As for a LAN service domain, you set this configuration in the
CLUSTER_DISTRIBUTION parameter in the Feature section of the
lsf.licensescheduler file.

For a WAN service domain, you can optionally configure dynamic license sharing
based on past license use across all clusters that are served by the WAN service
domain, and if required set minimum and maximum allocations for each cluster.
1. Set the WAN service domain name in the CLUSTER_DISTRIBUTION parameter.

CLUSTER_DISTRIBUTION = service_domain(cluster share/min/max...)

Use the service domain name that is defined in the ServiceDomain section.
2. Configure each cluster.

All clusters with access to the WAN service domain licenses must be included.
a. Set the cluster name.
b. Set the share for each cluster.

The share is a non-negative integer representing the share of licenses each
cluster receives in a static license allocation, and the starting share in a
dynamic license allocation.

3. Optionally, set ALLOC_BUFFER in the Feature section of the lsf.licensescheduler
file. When set, this parameter enables a dynamic sharing policy.
ALLOC_BUFFER = buffer

or
ALLOC_BUFFER = cluster1 buffer1 cluster2 buffer2...default buffer

v When extra license tokens are available, each cluster’s allocation increases to
as much as PEAK+BUFFER.
The value BUFFER is set by ALLOC_BUFFER in the Feature section, and the value
PEAK is the peak value of dynamic license token use over a time interval
that is set by PEAK_INUSE_PERIOD in the Parameters or Feature section.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 37

v When allocated tokens are not being use in a cluster, the cluster’s allocation
goes down to PEAK+BUFFER.
Since tokens are not being used in the cluster, the peak use value PEAK
decreases, thus PEAK+BUFFER also decreases.

The allocation buffer sets both the rate at which the cluster allocation can grow,
and the number of licenses that can go unused, depending on demand.
Allocation buffers help determine the maximum rate at which tokens can be
transferred to a cluster as demand increases in the cluster. The maximum rate
of transfer to a cluster is given by the allocation buffer that is divided by
MBD_REFRESH_INTERVAL. Be careful not to set the allocation buffer too large so
that licenses are not wasted because they are allocated to a cluster that cannot
use them.

4. Optionally, when dynamic sharing is enabled (ALLOC_BUFFER is defined) you can
set the minimum and maximum allocation for each cluster.
The minimum allocation reserves license tokens for exclusive use by the cluster;
the maximum allocation limits the total number of license tokens that are
received by the cluster.
Cluster shares take precedence over minimum allocations configured. If the
minimum allocation exceeds the cluster's share of the total tokens, a cluster's
allocation as given by bld may be less than the configured minimum allocation.

To allow a cluster to be able to use licenses only when another cluster does not
need them, you can set the cluster distribution for the cluster to 0, and specify an
allocation buffer for the number of tokens that the cluster can request.

For example:
Begin Feature
CLUSTER_DISTRIBUTION=Wan(CL1 0 CL2 1)
ALLOC_BUFFER=5
End Feature

When no jobs are running, the token allocation for CL1 is five. If CL2 does not
require the tokens, CL1 can get more than five.

Examples

Static example (no allocation buffer set):
Begin Feature
NAME=verilog
CLUSTER_DISTRIBUTION=MyWanServer(tokyo_cl 1 newyork_cl 1 toronto_cl 2)
End Feature

In this example, licenses are statically allocated based solely on the number of
shares that are assigned to each cluster. If the number of licenses is not evenly
divisible by the number of shares, the additional licenses are distributed
round-robin to clusters in the specified order in CLUSTER_DISTRIBUTION. Thus if
there are 98 licenses in total, tokyo_cl receives 25, newyork_cl receives 25, and
toronto_cl receives 48. Each cluster limits the total rusage of running jobs that are
based on the allocated license tokens.

Dynamic example (allocation buffer set):
Begin Feature
NAME=verilog
CLUSTER_DISTRIBUTION=MyWanServer(tokyo_cl 1 newyork_cl 1 toronto_cl 2/10/50)
ALLOC_BUFFER=tokyo_cl 5 newyork_cl 1 toronto_cl 2
End Feature

Configuring License Scheduler

38 Using IBM Platform License Scheduler

In this example, licenses are initially distributed according to the assigned shares.
Since allocation buffers are set, dynamic sharing that is based on past use is
enabled. Based on the allocation buffers, toyko_cl receives license tokens the fastest
when there is demand within the cluster. Minimum and maximum allocations of
10 and 50 are set for toronto_cl, which also has the largest share.

LAN and dynamic WAN example:
Begin Feature
NAME=verilog
CLUSTER_DISTRIBUTION=MyWan(c1 1/1/25 c2 1/1/30 c3 2/5/100) MyLan(c1 1)
ALLOC_BUFFER=c3 5 default 2
End Feature

In this example, the verilog license feature is available from both WAN and LAN
service domain, however only cluster c1 receives the license feature from both
servers. Licenses from the WAN service domain are initially distributed according
to the assigned shares. Since allocation buffers are set, dynamic sharing that is
based on past use is enabled. Based on the allocation buffers cluster c3 receives
license tokens the fastest when there is demand within the cluster.

Configure license features
Each type of license requires a Feature section in the lsf.licensescheduler file.
1. Define the feature name that is used by FlexNet to identify the type of license

by using the NAME parameter.
Optionally, define an alias between License Scheduler and FlexNet feature
names by using the FLEX_NET parameter to specify the FlexNet feature name
and the NAME parameter to define the License Scheduler alias.
You only need to specify FLEX_NAME if the License Scheduler token name is not
identical to the FlexNet feature name, or for FlexNet feature names that either
start with a number or contain a hyphen character (-), which are not supported
in LSF.
If the FlexNet feature name is AppZ201 and you intend to use this same name
as the License Scheduler token name, define the NAME parameter as follows:
Begin Feature
NAME=AppZ201
End Feature

If the FlexNet feature name 201-AppZ, this is not supported in LSF because the
feature name starts with a number and contains a hyphen. Therefore, define
AppZ201 as an alias of the 201-AppZ FlexNet feature name as follows:
Begin Feature
NAME=AppZ201
FLEX_NAME=201-AppZ
End Feature

2. Optionally, combine multiple interchangeable FlexNet features into one License
Scheduler alias by specifying multiple FlexNet feature names in FLEX_NAME as a
space-delimited list.
In this example, two FlexNet features named 201-AppZ and 202-AppZ are
combined into an alias named AppZ201.
Begin Feature
NAME=AppZ201
FLEX_NAME=201-AppZ 202-AppZ
End Feature

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 39

AppZ201 is a combined feature that uses both 201-AppZ and 202-AppZ tokens.
Submitting a job with AppZ201 in the rusage string (for example, bsub -Lp Lp1
-R "rusage[AppZ201=2]" myjob) means that the job checks out tokens for either
201-AppZ or 202-AppZ.

Configure taskman jobs in cluster mode
Optionally, to run taskman (interactive) jobs in cluster mode, include the dummy
cluster interactive in your service domain configuration.

In the Feature section:
1. Include the dummy cluster interactive in the CLUSTER_DISTRIBUTION parameter.
2. Set a share for the dummy cluster interactive.
3. Optionally, set an allocation buffer for the dummy cluster interactive to enable

dynamic allocation.

Examples
Begin Feature
NAME=licenseA
CLUSTER_DISTRIBUTION=MyLanServer(tokyo_cl 1 interactive 1)
End Feature

Begin Feature
NAME=licenseB
CLUSTER_DISTRIBUTION=MyWanServer(tokyo_cl 1 newyork_cl 1 interactive 2)
End Feature

Allocate licenses to non-LSF jobs
Applies to WAN service domains only.

Set WORKLOAD_DISTRIBUTION in the Feature section to allocate licenses for non-LSF
use.
WORKLOAD_DISTRIBUTION=service_domain_name(LSF lsf_distribution NON_LSF non_lsf_distribution)

If WORKLOAD_DISTRIBUTION is set for a LAN service domain in cluster mode, the
parameter is ignored.

For example, to set aside 20% of licenses for use outside of LSF:
Begin Feature
NAME=licenseB
CLUSTER_DISTRIBUTION=MyWanServer(tokyo_cl 1 newyork_cl 1)
WORKLOAD_DISTRIBUTION=MyWanServer(LSF 8 NON_LSF 2)
End Feature

Restart to implement configuration changes
1. Run bladmin reconfig to restart the bld.
2. If you deleted any Feature sections, restart mbatchd. In this case, a message is

written to the log file, prompting the restart.
If required, run badmin mbdrestart to restart each LSF cluster.

View license allocation
Run blstat -t token_name to view information for a specific license token (as
configured in a Feature section).
blstat output differs for cluster mode and project mode.

Configuring License Scheduler

40 Using IBM Platform License Scheduler

Configure cluster mode with guarantees
Cluster mode distributes licenses across LSF clusters. To guarantee license
resources to projects within a cluster and allow loaning of license resources when
not in use, use LSF guarantee-type SLAs. Guarantees and loans in cluster mode are
similar to non-shared licenses and ownership in project mode.

A guarantee provides jobs that belong to set consumers with specific resources
(such as hosts). Jobs run with guaranteed resources when possible. When the
guaranteed resources are used, jobs run outside the guarantee following whatever
other scheduling features are configured. Guarantees are configured within a
guaranteed resource pool.

Guarantee SLAs are configured in Platform LSF. For more information, see
Administering IBM Platform LSF and IBM Platform LSF Configuration Reference.

Configure service classes
Service classes allow access to guaranteed resources. Configure a service class for
each license project in the cluster.

Configure each ServiceClass section in the lsb.serviceclasses file. Begin with the
line Begin ServiceClass and end with the line End ServiceClass. For each service
class, you must specify:
1. NAME: the name of the service class.
2. GOALS = [GUARANTEE]
3. Optional parameters for the ServiceClass section are ACCESS_CONTROL,

AUTO_ATTACH, and DESCRIPTION.

You can configure as many service class sections as you need.

Important:

The name that you use for your service class cannot be the same as an existing
host partition or user group name.
For example:
Begin ServiceClass
NAME = sla1
GOALS = [GUARANTEE]
ACCESS_CONTROL=LIC_PROJECTS[proj1]
DESCRIPTION = A guarantee SLA with access restricted to the license project proj1.
End ServiceClass

Automatically attach jobs to service classes
When the optional parameter AUTO_ATTACH is set, jobs are automatically
attached to the service class.

When automatic attachment is not set, jobs can be submitted to the service class by
running bsub -sla serviceclass_name.

If a job can access more than one SLA with automatic attachment set, it is attached
to the first valid SLA in the order of the configuration file.

Set AUTO_ATTACH=Y in the ServiceClass section in the lsb.serviceclasses file.
For example,

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 41

Begin ServiceClass
NAME = sla1
GOALS = [GUARANTEE]
ACCESS_CONTROL=LIC_PROJECTS[proj1]
AUTO_ATTACH=Y
DESCRIPTION = A guarantee SLA with access restricted to the license project proj1.
Jobs submitted to proj1 are attached to the SLA automatically and run on guaranteed
resources if possible.
End ServiceClass

Configure a resource pool of license tokens
Guaranteed resource pools provide a minimum resource guarantee to consumers,
and can optionally loan out guaranteed resources not in use.

Guaranteed resource pools are defined in lsb.resources and used by consumers
that are defined within ServiceClass sections in lsb.serviceclasses.

Configure a GuaranteedResourcePool section in lsb.resources. Begin with the line
Begin GuaranteedResourcePool and end with the line End
GuaranteedResourcePool. Specify the following parameters:
1. NAME: the name of the guaranteed resource pool.
2. TYPE: the guarantee type. For licenses, use the type resources and include the

name of the license feature.
3. DISTRIBUTION: share assignments for all service classes using the resource

pool. Can be percent or absolute numbers.
4. Optional parameters for GuaranteedResourcePool sections of resources are

LOAN_POLICIES, and DESCRIPTION.

You can configure as many resource pools as you need. One resource pool can be
used by several SLAs, and one SLA can access multiple resource pools.
For example:
Begin GuaranteedResourcePool
NAME = hspice_guarantees
TYPE = resource[hspice]
DISTRIBUTION = ([proj1_sc,50%][proj2_sc,50%])
DESCRIPTION = A resource pool of hspice licenses controlled by License Scheduler
and used by proj1_sc and proj2_sc.
End GuaranteedResourcePool

Configure loans
Loans from unused guarantees are recommended when you are using cluster
mode. When loans are disabled, use a static license distribution policy.

When configured, unused license resources are loaned out based on the loan
policy. The loan policy allows specific queues to access unused resources from
guaranteed resource pools.
1. Configure a guaranteed resource pool in lsb.resources with the required NAME,

TYPE, and DISTRIBUTION parameters.
2. Add a loan policy to the guaranteed resource pool.

Use LOAN_POLICIES= QUEUES[queue_name] to specify which queues can access
loaned resources. Use the keyword all to loan to jobs from any queue.
For example, to allow loans to jobs from the queue my_queue:

Configuring License Scheduler

42 Using IBM Platform License Scheduler

Begin GuaranteedResourcePool
...
LOAN_POLICIES = QUEUES[my_queue]
...
End GuaranteedResourcePool

Configure loans to short jobs
Loans can be restricted based on job run time, or estimated run time.

Add the policy DURATION[minutes] to the guaranteed resource pool
configuration in lsb.resources, where minutes is an integer.
Use DURATION to set a maximum job runtime limit (or estimated run time,
whichever is shorter) for jobs to borrow resources. Omit DURATION completely to
allow jobs with any run time to borrow from the guarantee.
For example, to allow loans to jobs from any queue with a run time of 10 minutes
or less:
Begin GuaranteedResourcePool
...
LOAN_POLICIES = QUEUES[all] DURATION[10]
...
End GuaranteedResourcePool

Configure loans to stop when jobs are waiting for guaranteed
resources
Loans can be restricted so that jobs have access to the loaned resources only when
consumers with unused guaranteed resources do not have pending loads.

Restricting loans is useful when running jobs that require several licenses. With
restricted loans enabled, loaning out single licenses does not delay jobs that are
waiting for license resources to accumulate.

Add the policy CLOSE_ON_DEMAND to the guaranteed resource pool
configuration in lsb.resources.
For example,
Begin GuaranteedResourcePool
...
LOAN_POLICIES = QUEUES[queue1] CLOSE_ON_DEMAND
...
End GuaranteedResourcePool

Configure a queue with access to all guaranteed resources
Queues with high priority (such as administrator test queues) can be configured
with access to all guaranteed resources, regardless of SLA demand.

Configure a queue in lsb.queues with SLA_GUARANTEES_IGNORE = Y.

Note:

Using SLA_GUARANTEES_IGNORE=Y defeats the purpose of guaranteeing
resources. sparingly for low traffic queues only.

Restart for changes to take effect
Cluster mode must be enabled, and LSF clusters must be restarted for LSF
configuration changes to take effect.
1. In the Parameters section of lsf.licensescheduler, confirm cluster mode is

enabled (CLUSTER_MODE=Y).

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 43

2. Run badmin mbdrestart to restart each LSF cluster.
3. Run bladmin reconfig to restart the bld.

View guaranteed resource pools
Guaranteed resource pool configuration includes the resource type, and
distribution among consumers that are defined in the corresponding service
classes.

Run bresources -g -l -m to see details of the guaranteed resource pool
configuration, including a list of hosts currently in the resource pool.

Project mode with projects
You can configure license distribution when you are running license projects in
project mode. Each distribution policy is applied locally, within service domains.

Tip:

Although license projects are not the same as LSF projects, you can map your
license project names to LSF project names for easier monitoring.

Configure parameters
1. Project mode can be set globally, or for individual license features. Set

individually when you are using project mode for some features and cluster
mode for some features.
a. If you are using project mode for all license features, define CLUSTER_MODE=N

in the Parameters section of lsf.licensescheduler.
b. If you are using project mode for some license features, define

CLUSTER_MODE=N for individual license features in the Feature section of
lsf.licensescheduler.
The Feature section setting of CLUSTER_MODE overrides the global Parameter
section setting.

2. List the License Scheduler hosts.
By default with an LSF installation, the HOSTS parameter is set to the
LSF_MASTER_LIST.
v List the hosts in order from most preferred to least preferred. The first host is

the master license scheduler host.
v Specify a fully qualified host name such as hostX.mycompany.com unless all

your License Scheduler clients run in the same DNS domain.
HOSTS=host1 host2

3. Specify the data collection frequency between License Scheduler and FlexNet.
The default is 30 seconds.
LM_STAT_INTERVAL=seconds

4. Specify the path to the FlexNet command lmstat.
For example, if lmstat is in /etc/flexlm/bin:
LMSTAT_PATH=/etc/flexlm/bin

Configure clusters
Configure the clusters that are permitted to use License Scheduler in the Clusters
section of the lsf.licensescheduler file.

Configuring License Scheduler

44 Using IBM Platform License Scheduler

This configuration is only required if you are using more than one cluster.

In the Clusters section, list all clusters that can use License Scheduler.
For example:
Begin Clusters

CLUSTERS

cluster1

cluster2

End Clusters

Configure projects
Each project that is defined in a Projects section of lsf.licensescheduler can have
a distribution policy that is applied in the Feature section, where projects can be
associated with license features.

Define the projects with or without priority.
Begin Projects
PROJECTS PRIORITY
Lp1 3
Lp2 1
Lp3 2
default 0
End Projects

The higher the number, the higher the priority. When two projects have the same
priority number that is configured, the first listed project has a higher priority.
Priority is taken into account when license preemption occurs, where lower
priority projects are preempted first.
If not explicitly configured, the default project has the priority of 0. A default
project is used when no license project is specified during job submission.

Add project description
Optionally, you can add a project description of up to 64 characters to your
projects to help identify them.

In the Project section of lsf.licensescheduler, find the project and add a
description in the DESCRIPTION column.
For example:
Begin Projects
PROJECTS PRIORITY DESCRIPTION
p1 10 "Engineering project 123"
p2 9 "QA build project 2C"
P3 8 ""
End Projects

When you are running blinfo -Lp or blinfo -G, any existing project descriptions
display.

Project mode service domains
A service domain is a group of one or more FlexNet license servers. License
Scheduler manages the scheduling of the license tokens, but the license server
actually supplies the licenses. You must configure at least one service domain for
License Scheduler.

In project mode, each cluster can access licenses from multiple WAN and LAN
service domains. License Scheduler collects license availability and usage from

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 45

FlexNet license server hosts, and merges this information with license demand and
usage information from LSF clusters to make distribution and preemption
decisions.

Note:

Unless you require multiple service domains for some specific reason, configure
both modes with at most one LAN and one WAN for each feature in a cluster.
Because License Scheduler does not control license checkout, running with one
cluster that is accessing multiple service domains is not optimal.

Configure service domains
You configure each service domain, with the license server names and port
numbers that serve licenses to a network, in the ServiceDomain section of the
lsf.licensescheduler file.
1. Add a ServiceDomain section, and define NAME for each service domain.

For example:
Begin ServiceDomain
NAME=DesignCenterA
End ServiceDomain

2. Specify the FlexNet license server hosts for that domain, including the host
name and FlexNet port number.
For example:
Begin ServiceDomain
NAME=DesignCenterA
LIC_SERVERS=((1700@hostA))
End ServiceDomain

For multiple license servers:
LIC_SERVERS=((1700@hostA)(1700@hostB))

For redundant servers, the parentheses are used to group the three hosts that
share license.dat file:
LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

Note:

If FlexNet uses a port from the default range, you can specify the host name
without the port number. See the FlexNet documentation for the values of the
default port range.

LIC_SERVERS=((@hostA))

Configure remote FlexNet license server hosts
The remote FlexNet license server hosts must have lmutil (or lmstat) in the
LMSTAT_PATH directory before configuring these hosts with License Scheduler.

The license collector (blcollect) is a multi-threaded daemon that queries all
FlexNet license servers under License Scheduler for license usage information. The
license collector calls lmutil (or lmstat) to collect information from each license
server. When there are both local and remote license servers (that is, license servers
that are in a different subnet from the host running blcollect), the threads that
collect information from the remote license servers are slower than the threads that
collect information from local license servers.

If there are remote license servers, designate at least one remote license server
within each domain as a remote agent host. The license collector connects to the

Configuring License Scheduler

46 Using IBM Platform License Scheduler

remote agent host and calls lmstat on the remote agent host and gets license
information from all license servers that the remote agent host serves. The remote
agent host and the remote license servers should be in the same domain to
improve access.
1. Select the connection method for the license collector to connect to remote

hosts.
License Scheduler supports the use of ssh, rsh, and lsrun to connect to remote
hosts. If using lsrun as the connection method, the agent host must be a server
host in the LSF cluster and RES must be started on this host. Otherwise, if
using ssh or rsh as the connection method, the agent host does not have to be
a server host in the LSF cluster.
a. In the Parameters section, define the REMOTE_LMSTAT_PROTOCOL parameter

and specify the connection command (and command options, if required) to
connect to remote servers.
REMOTE_LMSTAT_PROTOCOL=ssh [ssh_command_options] |
rsh [rsh_command_options] | lsrun [lsrun_command_options]
The default connection method is ssh with no command options. License
Scheduler uses the specified command (and optional command options) to
connect to the agent host. License Scheduler automatically appends the
name of the agent host to the command, so there is no need to specify the
host with the command.

Note: License Scheduler does not validate the specified command, so you
must ensure that you correctly specify the command. Any connection errors
are noted in the blcollect log file.

b. If the connection method is ssh or rsh, verify that this connection method is
configured so the host running the license collector can connect to remote
hosts without specifying a password.

2. Define remote license servers and remote agent hosts.
In the ServiceDomain section, define the REMOTE_LMSTAT_SERVERS parameter:
REMOTE_LMSTAT_SERVERS=host_name[(host_name ...)] [host_name[(host_name ...)] ...]
Specify a remote agent host, then any license servers that it serves in
parentheses. The remote agent host and the license servers that it serves must
be in the same subnet. If you specify a remote agent host by itself without any
license servers (for example, REMOTE_LMSTAT_SERVERS=hostA), the remote agent
host is considered to be a remote license server with itself as the remote agent
host. That is, the license collector connects to the remote agent host and only
gets license information on the remote agent host. You can specify multiple
remote agent hosts to serve multiple subnets, or multiple remote agent hosts to
serve specific license servers within the same subnet.
Any host that you specify here must be a license server defined in LIC_SERVERS.
Any hosts defined in REMOTE_LMSTAT_SERVERS that are not also defined in
LIC_SERVERS are ignored.
The following examples assume that the license collector (blcollect) is running
on LShost1. That is, the following parameter is specified in the Parameters
section:
Begin Parameters
...
HOSTS=LShost1
...
End Parameters

v One local license server (hostA) and one remote license server (hostB):

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 47

LIC_SERVERS=((1700@hostA)(1700@hostB))
REMOTE_LMSTAT_SERVERS=hostB

– The license collector runs lmutil (or lmstat) directly on hostA to get
license information on hostA.

– Because hostB is defined without additional license servers, hostB is a
remote agent host that only serves itself. The license collector connects to
hostB (using the command specified by the REMOTE_LMSTAT_PROTOCOL
parameter) and runs lmstat to get license information on 1700@hostB.

v One local license server (hostA), one remote agent host (hostB) that serves
one remote license server (hostC), and one remote agent host (hostD) that
serves two remote license servers (hostE and hostF):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE)(1700@hostF))
REMOTE_LMSTAT_SERVERS=hostB(hostC) hostD(hostE hostF)

– The license collector runs lmutil (or lmstat) directly to get license
information from 1700@hostA, 1700@hostB, and 1700@hostD.

– The license collector connects to hostB (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostC.
hostB and hostC should be in the same subnet to improve access.

– The license collector connects to hostD (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil (or lmstat) to get
license information on 1700@hostE and 1700@hostF.
hostD, hostE, and hostF should be in the same subnet to improve access.

v One local license server (hostA), one remote license server (hostB), and one
remote agent host (hostC) that serves two remote license servers (hostD and
hostE):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE))
REMOTE_LMSTAT_SERVERS=hostB hostC(hostD hostE)

– The license collector runs lmutil (or lmstat) directly to get license
information on 1700@hostA and 1700@hostC.

– The license collector connects to hostB (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostB.

– The license collector connects to hostC (using the command specified by
the REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostD and 1700@hostE.
hostC, hostD, and hostE should be in the same subnet to improve access.

Configure license features
Each type of license requires a Feature section in the lsf.licensescheduler file.

The Feature section includes the license distribution policy.
1. Define the feature name that is used by FlexNet to identify the type of license

by using the NAME parameter.
Optionally, define an alias between License Scheduler and FlexNet feature
names by using the FLEX_NAME parameter to specify the FlexNet feature name
and the NAME parameter to define the License Scheduler alias.
You only need to specify FLEX_NAME if the License Scheduler token name is not
identical to the FlexNet feature name, or for FlexNet feature names that either
start with a number or contain a hyphen character (-), which are not supported
in LSF.

Configuring License Scheduler

48 Using IBM Platform License Scheduler

If the FlexNet feature name is AppZ201 and you intend to use this same name
as the License Scheduler token name, define the NAME parameter as follows:
Begin Feature
NAME=AppZ201
End Feature

If the FlexNet feature name 201-AppZ, this is not supported in LSF because the
feature name starts with a number and contains a hyphen. Therefore, define
AppZ201 as an alias of the 201-AppZ FlexNet feature name as follows:
Begin Feature
NAME=AppZ201
FLEX_NAME=201-AppZ
End Feature

2. Optionally, combine multiple interchangeable FlexNet features into one License
Scheduler alias by specifying multiple FlexNet feature names in FLEX_NAME as a
space-delimited list.
In this example, two FlexNet features named 201-AppZ and 202-AppZ are
combined into an alias named AppZ201.
Begin Feature
NAME=AppZ201
FLEX_NAME=201-AppZ 202-AppZ
End Feature

AppZ201 is a combined feature that uses both 201-AppZ and 202-AppZ tokens.
Submitting a job with AppZ201 in the rusage string (for example, bsub -Lp Lp1
-R "rusage[AppZ201=2]" myjob) means that the job checks out tokens for either
201-AppZ or 202-AppZ.

3. Define a distribution policy.
A distribution policy defines the license fairshare policy in the format:
DISTRIBUTION = ServiceDomain1 (project1 share_ratio project2 share_ratio ...)
ServiceDomain2 (project3 share_ratio ...)

For example, a basic configuration assigns shares:
Begin Feature
FLEX_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION = DesignCenterA (LpA 2 LpB 1 default 1)
End Feature

LpA has the right to twice as many licenses as LpB. Jobs that are submitted
without a license project that is specified can run under the default project.

4. Optionally, add owned licenses to the distribution policy in the format:
DISTRIBUTION = ServiceDomain1 (project1 share_ratio/number_owned
project2 share_ratio/number_owned ...) ServiceDomain2
(project3 share_ratio ...)

If LS_FEATURE_PERCENTAGE=Y or LS_ACTIVE_PERCENTAGE=Y in
lsf.licensescheduler, number_owned is expressed as a percentage of the total
licenses.
Example 1:
DISTRIBUTION = LanServer(Lp1 1 Lp2 1/10)

This example assumes that there are 10 licenses in total, all owned by Lp2.
The two License Scheduler projects, Lp1 and Lp2, and share the licenses, but
grant ownership of the licenses to one of the projects (Lp2).
When Lp2 has no work to be done, Lp1 can use the licenses. When Lp2 has
work to do, Lp1 must return the license immediately to Lp2. The license
utilization is always at the maximum, showing that all licenses are in use even
while the license distribution policies are being enforced.
Example 2:

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 49

DISTRIBUTION=LanServer1(Lp1 1 Lp2 2/6)

Lp1 is set to use one third of the available licenses and Lp2 to use two thirds of
the licenses. However, Lp2 is always entitled to six licenses and preempts other
license project jobs when licenses are needed immediately.
If the projects are competing for a total of 12 licenses, Lp2 is entitled to eight
(six on demand, and two more as soon as they are free).
If the projects are competing for only six licenses in total, Lp2 is entitled to all
of them, and Lp1 can use licenses only when Lp2 does not need them.

Track partial and unspecified license use
When you want to manage licenses not included in job resource requirements or
have applications that you know use licenses for only part of the length of each
job, use these optional settings.
1. Optionally, specify DYNAMIC=Y to consider the license feature as a dynamic

resource when it is only used for part of the job.
Set DYNAMIC=Y for applications with known license use that do not use the
license for the entire length of the job. Jobs are submitted with duration
specified, then release the license when not in use.
Begin Feature
NAME = p1_2
DISTRIBUTION= Lan1 (a 1 b 1 c 1 default 1)
DYNAMIC=Y
End Feature

For example, a taskman job submission with duration:
taskman -R "rusage[p1_2=1:duration=2]" myjob

2. Optionally, set ENABLE_DYNAMIC_RUSAGE=Y in the Feature section of
lsf.licensescheduler to track license use of license features not specified at job
submission.
For example:
Begin Feature
NAME = feat2
DISTRIBUTION = LanServer(proj1 1 default 1)
ENABLE_DYNAMIC_RUSAGE = y
End Feature

Submit a job to run the application, specifying the license feature name:
bsub -R "rusage[feat1=1]" -Lp proj1 app1

The job runs and license feat1 is checked out:
blstat
FEATURE: feat1
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
proj1 50.0 % 0 1 0 2 0
default 50.0 % 0 0 0 3 0

FEATURE: feat2
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 10 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
proj1 50.0 % 0 0 0 5 0
default 50.0 % 0 0 0 5 0

blusers -l
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS OTHERS DISPLAYS PIDS
feat1 LanServer user1 hostA 1 1 0 (/dev/tty) (16326)

Configuring License Scheduler

50 Using IBM Platform License Scheduler

blusers -J
JOBID USER HOST PROJECT CLUSTER START_TIME
1896 user1 hostA proj1 cluster1 Aug 9 10:01:25
RESOURCE RUSAGE SERVICE_DOMAIN INUSE EFFECTIVE_PROJECT
feat1 1 LanServer 1 proj1

Later, app1 checks out feature feat2. Since it was not specified at job
submission, feat2 is a class C license checkout. But since it is configured with
ENABLE_DYNAMIC_RUSAGE=Y, jobs that require feat2 are considered managed
workload, and subject to the distribution policies of project proj1:
blstat
FEATURE: feat1
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
proj1 50.0 % 0 1 0 2 0
default 50.0 % 0 0 0 2 0

FEATURE: feat2
SERVICE_DOMAIN: LanServer
TOTAL_INUSE: 1 TOTAL_RESERVE: 0 TOTAL_FREE: 9 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
proj1 50.0 % 0 1 0 4 0
default 50.0 % 0 0 0 5 0

blusers -l
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS OTHERS DISPLAYS PIDS
feat1 LanServer user1 hostA 1 1 0 (/dev/tty) (16326)
feat2 LanServer user1 hostA 1 1 0 (/dev/tty) (16344)

blusers -J
JOBID USER HOST PROJECT CLUSTER START_TIME
1896 user1 hostA proj1 cluser1 Aug 9 10:01:25
RESOURCE RUSAGE SERVICE_DOMAIN INUSE EFFECTIVE_PROJECT
feat1 1 LanServer 1 proj1
feat2 1 LanServer 1 proj1

Restart to implement configuration changes
1. Run bladmin reconfig to restart the bld.
2. If you deleted any Feature sections, restart mbatchd. In this case, a message is

written to the log file, prompting the restart.
If required, run badmin mbdrestart to restart each LSF cluster.

View projects and descriptions
Run blinfo -Lp to view projects and descriptions.
For example:
blinfo -Lp
PROJECT PRIORITY DESCRIPTION
p1 10 Engineering project 123
p2 9 QA build project 2C
P3 8

View license allocation
Run blstat -t token_name to view information for a specific license token (as
configured in a Feature section).
blstat output differs for cluster mode and project mode.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 51

Project mode optional settings
After you configure License Scheduler in project mode with projects or project
groups, you can include some additional configuration that is not required, but can
be useful.

Active ownership
With ownership defined, projects with demand for licenses are able to reclaim
licenses up to the assigned ownership share for the project. With active ownership
enabled, ownership is expressed as a percent of the total ownership for active
projects, and the actual ownership for each project decreases as more projects
become active. Active ownership allows ownership to automatically adjust based
on project activity.

Active ownership can be used with projects, groups of projects, and project groups.
Set percentage ownership values to total more than 100% to benefit from active
ownership.

Configure active ownership
When active ownership is enabled, ownership settings for inactive projects are
disregarded during license token distribution.
1. Set LS_ACTIVE_PERCENTAGE=Y in the Feature section.

All ownership values for inactive projects are set to zero, and if the total
ownership percent exceeds 100%, the total ownership is adjusted.
LS_FEATURE_PERCENTAGE=Y is automatically set, and owned and non-shared
values are expressed in percent. If used with project groups, OWNERSHIP, LIMITS
and NON_SHARED are expressed in percent.

2. Set the percentage of owned licenses in the DISTRIBUTION parameter (Feature
section) for a total percentage that exceeds 100%.
For example:
...
DISTRIBUTION=wanserver (Lp1 2/50 Lp2 1/30 Lp3 2/30 Lp4 3/30)
LS_ACTIVE_PERCENTAGE=Y
...

In this example, all four license projects are configured with a share and an
owned value. Lp1 has the greatest number of owned licenses, and can use
preemption to reclaim the most licenses.
If only Lp1 is active, Lp1 owns 50% of licenses. Total active ownership is 50%,
so no adjustment is made.
If Lp1 and Lp2 are active, Lp1 owns 50% and Lp2 owns 30%. Total active
ownership is 80%, so no adjustment is made.
If Lp1, Lp2, and Lp3 are active, Lp1 owns 50%, Lp2 owns 30%, and Lp3 owns
30%. Total active ownership is 110%, so ownership is scaled to result in Lp1
owning 46%, Lp2 owning 27%, and Lp3 owning 27% (Exact numbers are
rounded).
If all projects are active, the total active ownership is 140%. Ownership is scaled
to result in Lp1 owning 37%, Lp2 owning 21%, Lp3 owning 21%, and Lp4
owning 21% (Exact numbers are rounded).

Default projects
Jobs requiring a license feature but not submitted to a license project for that
feature are submitted to the default project. For jobs to run, a share of license
tokens must be assigned to the default project.

Configuring License Scheduler

52 Using IBM Platform License Scheduler

If you do not want the default project to get shares of license tokens, you do not
have to define a default project in the distribution policy for a feature, however
jobs in the default project become pending by default.

To avoid having jobs that are submitted without a project pend, either assign
shares to the default project, or disable default projects so jobs are rejected.

Configure default project shares
Jobs cannot run in the default project unless shares are assigned.

Define a default project in the Feature section DISTRIBUTION parameter.
Any job that is submitted without a project name that is specified by -Lp can now
use tokens from the default project.

Disable default projects
License token jobs that are submitted without a project that is specified are
accepted and assigned to the default project, unless your configuration specifies
that such jobs be rejected.

Optionally, set LSF_LIC_SCHED_STRICT_PROJECT_NAME=y in lsf.conf.
Jobs that are submitted without a project that is specified are rejected, and the
default license project is not used.

Groups of projects
If you configure groups of projects, you can set shares and ownership for each
group and distribute license features to groups of projects. Configure a license
project to belong only to one group. Preemption first occurs between groups of
projects, and then occurs between projects.

Preemption with groups of projects

The following tables show changes in preemption behavior that is based on
ownership that is configured for groups of projects, with a total of 20 licenses.
With groups of projects that are configured, GroupA is able to preempt to reclaim
10 owned licenses. Since Lp2 is not using all five owned licenses, Lp1 can use
more than the share it owns.

Project license ownership only

License project Licenses owned Licenses used

Lp1 5 6

Lp2 5 0

Lp3 5 7

Lp4 5 7

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 53

Groups of projects with license ownership

Group License projects
Project licenses
owned

Licenses that are
used after
preemptions

GroupA Lp1

Lp2

5

5

9

1

GroupB Lp3

Lp4

5

5

6

4

Configure group license ownership
In lsf.licensescheduler, set the GROUP parameter in the Feature section.
1. Set up groups and members.

For example:
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer1(Lp1 5/5 Lp2 5/5 Lp3 5/5 Lp4 5/5)
GROUP = GroupA(Lp1 Lp2) GroupB (Lp3 Lp4)
End Feature

In this example, Lp1 and Lp2 belong to the group GroupA. Lp3 and Lp4 belong to
the GroupB group.

Configure interactive (taskman) jobs
By default, interactive (taskman) jobs do not receive a share of the license token
allocation, while all clusters receive equal shares.

You can allocate a share of all license features to interactive jobs in the Parameters
section.

To globally enable a share of the licenses for interactive tasks, you must set the
ENABLE_INTERACTIVE in lsf.licensescheduler.
In lsf.licensescheduler, edit the Parameters section:
Begin Parameters

...

ENABLE_INTERACTIVE = y

...

End Parameters

When the change in configuration takes effect, interactive tasks are allocated the
same share (by default) as each cluster.

Configure cluster and interactive allocations
By default in project mode, each cluster receives one allocation share from a license
feature, and interactive tasks receive no shares.

You can modify the allocation of license shares across clusters and to interactive
tasks in individual Feature sections.

In the Features section of lsf.licensescheduler, set the ALLOCATION parameter.
ALLOCATION=project_name (cluster_name [number_shares] ...)

Configuring License Scheduler

54 Using IBM Platform License Scheduler

Allocation examples

For example, this ALLOCATION setting matches the default when ALLOCATION is
undefined and interactive jobs are enabled with ENABLE_INTERACTIVE=Y. An equal
share is allocated to each cluster and to interactive jobs.
Begin Feature
NAME = AppX
DISTRIBUTION = LanServer1 (Lp1 1)
ALLOCATION = Lp1 (Cluster1 1 Cluster2 1 interactive 1)
End Feature

In this example, licenses are shared equally between cluster1 and interactive tasks,
with cluster2 receiving nothing:
Begin Parameters
...
ENABLE_INTERACTIVE = y
...
End Parameters
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer (Lp1 1)
ALLOCATION = Lp1(cluster1 2 cluster2 0 interactive 2)
End Feature

In the following example, even though the global allocation to interactive jobs is
disabled (ENABLE_INTERACTIVE = N), ALLOCATION defined in the Feature section can
assign a share to interactive jobs for this license feature.
Begin Feature
NAME = AppZ
DISTRIBUTION = LanServer (Lp1 1)
ALLOCATION = Lp1(cluster1 0 cluster2 1 interactive 2)
End Feature

Given a total of 12 licenses, 4 are allocated to cluster2 and 8 are allocated to
interactive tasks.

Configure feature groups
Feature groups that are configured in one FeatureGroup section allow you to view
the information for multiple features, which are grouped together.

In lsf.licensescheduler, configure a FeatureGroup section, listing the license
features associated with that license.
v Each FeatureGroup section must have a unique name.
v The feature names in FEATURE_LIST must already be defined in Feature sections.
v FEATURE_LIST cannot be empty or contain duplicate feature names.
v Features can be in more than one FeatureGroup section.

For example:
Begin FeatureGroup
NAME = Corporate
FEATURE_LIST = ASTRO VCS_Runtime_Net Hsim Hspice
End FeatureGroup

Begin FeatureGroup
NAME = Offsite
FEATURE_LIST = Encounter NCSim NCVerilog
End FeatureGroup

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 55

Restart to implement configuration changes
Changes that are made in lsf.licensescheduler require restarting the bld.

Changes that are made in lsf.conf require restating the LSF clusters.
1. Run badmin mbdrestart to restart each LSF cluster.
2. Run lsadmin limrestart or bladmin reconfig to restart the bld.

View license feature group information
When FEATURE_LIST is configured for a group of license features in
lsf.licensescheduler, you can view detailed information about the groups.

Run blinfo -g or blstat -g.
For example, if the feature group called myFeatureGroup1 has the members
feature2 and feature3:
blstat -g "myFeatureGroup1"
Information displays for feature2 and feature3 in descending alphabetical order.
Run blstat -g alone or with options -Lp, -t, -D ,-G', -s.
Run blinfo '-g' alone or with options -a, -t, -C, and -A.

License feature locality
Use license feature locality to limit features from different service domains to a
specific cluster so that License Scheduler does not grant tokens to jobs from license
that legally cannot be used on the cluster that is requesting the token.

How locality works

Setting locality means that license resources requested from different clusters are
mapped to different tokens in License Scheduler

Features with different locality are treated as different tokens by License Scheduler.
You must configure separate feature sections for same feature with different
localities.

Note:

You must make sure that your features are configured so that the applications
always first try to check out licenses locally.

When License Scheduler receives license requests from LSF, it knows where the
request is from, and it interprets the request into demands for tokens usable by
that cluster. For example, if clusterA sends a request to the bld asking for one
hspice license, License Scheduler marks the demand for both hspice@clusterA and
hspice. When the job gets either token to run, the demand is cleaned up for both
tokens.

Configure locality
Specify LOCAL_TO to limit features from different service domains to specific
clusters, so License Scheduler grants tokens of a feature only to jobs from clusters
that are entitled to them.

For example, if your license servers restrict the serving of license tokens to specific
geographical locations, use LOCAL_TO to specify the locality of a license token if
any feature cannot be shared across all the locations. This specification avoids

Configuring License Scheduler

56 Using IBM Platform License Scheduler

having to define different distribution and allocation policies for different service
domains, and allows hierarchical group configurations.

License Scheduler manages features with different localities as different resources.
1. In lsf.licensescheduler’s Feature section, configure LOCAL_TO.

For example: LOCAL_TO=Site1(clusterA clusterB) configures the feature for
more than one cluster, where the cluster names are already defined in the
Clusters section of lsf.licensescheduler.
LOCAL_TO=clusterA configures locality for only one cluster. This is the same
as LOCAL_TO=clusterA(clusterA).
License Scheduler now treats license features that are served to different
locations as different token names, and distributes the tokens to projects
according to the distribution and allocation policies for the feature.

2. (Optional) View locality settings.
a. Run blinfo -A.

The feature allocation by cluster locality displays.
FEATURE PROJECT ALLOCATION
hspice Lp1 [clusterA, 25.0%] [clusterB, 25.0%]

[clusterC, 25.0%] [interactive, 25.0%]
Lp2 [clusterA, 50.0%] [clusterB, 50.0%]

hspice@clusterA Lp1 [clusterA, 100.0%]
Lp2 [clusterA, 100.0%]

hspice@siteB Lp1 [clusterB, 80.0%] [clusterC, 20%]
Lp2 [clusterB, 80.0%] [clusterC, 20%]

hspice@clusterC Lp1 [clusterC, 60.0%] [interactive, 40.0%]
Lp2 [clusterC, 60.0%] [interactive, 40.0%]
Lp3 [clusterC, 60.0%] [interactive, 40.0%]

vcs Lp1 [clusterA, 33.0%] [clusterB, 33.0%]
[interactive, 33.0%]

Lp2 [clusterA, 50.0%] [clusterB, 50.0%]
vcs@clusterA Lp1 [clusterA, 100.0%]

Lp2 [clusterA, 100.0%]
vcs@siteB Lp1 [clusterB, 80.0%] [clusterC, 20%]

Lp2 [clusterB, 80.0%] [clusterC, 20%]
vcs@clusterC Lp1 [clusterC, 60.0%] [interactive, 40.0%]

Lp2 [clusterC, 60.0%] [interactive, 40.0%]
Lp3 [clusterC, 60.0%] [interactive, 40.0%]

b. Run blinfo -C.
The cluster locality information for the features displays.
NAME: hspice FLEX_NAME: hspice
CLUSTER_NAME FEATURE SERVICE_DOMAINS
clusterA hspice SD3 SD4

hspice@clusterA SD1
clusterB hspice SD3 SD4

hspice@siteB SD3
clusterC hspice SD3 SD4

hspice@siteB SD3
hspice@clusterC SD5

NAME: vcs FLEX_NAME: VCS_Runtime
CLUSTER_NAME FEATURE SERVICE_DOMAINS
clusterA vcs SD3 SD4

vcs@clusterA SD1
clusterB vcs SD3 SD4

vcs@siteB SD3
clusterC vcs SD3 SD4

vcs@siteB SD3
vcs@clusterC SD5

c. Run blusers.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 57

FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS
hspice@clusterA SD1 user1 host1 1 1
hspice@siteB SD2 user2 host2 1 1

d. Run blstat.
FEATURE: hspice
SERVICE_DOMAIN: SD3 SD4
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 22 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 0 0 0 11 0
Lp2 50.0 % 0 0 0 11 0
FEATURE: hspice@clusterA
SERVICE_DOMAIN: SD1
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 25 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 0 0 0 12 0
Lp2 50.0 % 0 0 0 13 0

FEATURE: hspice@siteB
SERVICE_DOMAIN: SD2
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 65 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 0 0 0 32 0
Lp2 50.0 % 0 0 0 33 0

e. Run bhosts -s.
Different resource information displays depending on the cluster locality of
the features.
From clusterA:
RESOURCE TOTAL RESERVED LOCATION
hspice 36.0 0.0 host1

From clusterB in siteB:
RESOURCE TOTAL RESERVED LOCATION
hspice 76.0 0.0 host2

Example configuration: two sites and four service domains:
Some of your service domains may have geographical restrictions when the
domains are serving licenses. In this example, two clusters in one location can run
hspice jobs. and four service domains are defined for the hspice feature:
v SD1 is a local license file for clusterA with 25 hspice licenses
v SD2 is a local license file for clusterB with 65 hspice licenses
v SD3 is a WANable license with 15 hspice licenses
v SD4 is a globally WANable license with seven hspice licenses

The geographical license checkout restrictions are:
v Jobs in clusterA can check out licenses from SD1 SD3 and SD4 but not SD2
v Jobs in clusterB can check out licenses from SD2 SD3 and SD4 but not SD1
Begin Feature

NAME = hspice

DISTRIBUTION = SD1 (Lp1 1 Lp2 1)

LOCAL_TO = clusterA

End Feature

Begin Feature

NAME = hspice

DISTRIBUTION = SD2 (Lp1 1 Lp2 1)

LOCAL_TO = clusterB

End Feature

Configuring License Scheduler

58 Using IBM Platform License Scheduler

Begin Feature

NAME = hspice

DISTRIBUTION = SD3 (Lp1 1 Lp2 1) SD4 (Lp1 1 Lp2 1)

End Feature

Or use the hierarchical group configuration (GROUP_DISTRIBUTION):
Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD1

LOCAL_TO = clusterA

End Feature

Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD2

LOCAL_TO = clusterB

End Feature

Begin Feature

NAME = hspice

GROUP_DISTRIBUTION = group1

SERVICE_DOMAINS = SD3 SD4

End Feature

Submit jobs that use locality
LOCAL_TO is configured in lsf.licensescheduler.

Job submission is simplified when locality is configured.

Specify the resource usage string with the same resource name you see in bhosts
-s.
No OR rusage string is needed.
For example:
bsub -Lp Lp1 -R "rusage[hspice=1]" myjob

How locality works with other settings
The following table shows various combinations of LOCAL_TO and other feature
section parameters:

NAME FLEX_NAME

1 AppX -

2 AppZ201 201-AppZ

3 AppB_v1 AppB

1. You can define different License Scheduler tokens for the same FlexNet feature.
The service domain names (in either the DISTRIBUTION line or the
SERVICE_DOMAINS for group configurations) of the same FlexNet feature in
different feature sections must be exclusive. They cannot overlap.

2. When LOCAL_TO is configured for a feature, you can define different License
Scheduler tokens for the same FlexNet feature with different localities. The
constraints are:

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 59

v For the same FlexNet feature, service domains must be exclusive.
v The location name of LOCAL_TO defines the locality of that feature, so the

name must be unique for all tokens with same FlexNet feature.
v Use same location name for different FlexNet features with the same pattern

of locality, but License Scheduler does not check whether the same location
name of a different feature contains the same list of clusters.

3. Features must either have a different NAME or have LOCAL_TO defined. The
service domains for each License Scheduler token of same FlexNet feature must
be exclusive.

How locality works with ALLOCATION and ENABLE_INTERACTIVE

The LOCAL_TO parameter simplifies the ALLOCATION configuration. Most of the time
you are only interested in who can participate to share a particular token. LOCAL_TO
gives the equal share for all the clusters that are defined in LOCAL_TO and applies to
all the projects. Use ALLOCATION to fine-tune the shares for individual projects
between different clusters:
v Except for the keyword interactive, all the cluster names that are defined in

ALLOCATION must also be defined in the LOCAL_TO parameter.
v The global parameter ENABLE_INTERACTIVE and ALLOCATION with interactive share

defined works same as before. If ALLOCATION is configured, it ignores the global
setting of the ENABLE_INTERACTIVE parameter.

v If ALLOCATION is not defined, but LOCAL_TO is defined, the default value for
ALLOCATION is equal shares for all the clusters defined in LOCAL_TO parameter.
This share applies to all license projects defined in DISTRIBUTION or
GROUP_DISTRIBUTION.

v If both ALLOCATION and LOCAL_TO are defined, ALLOCATION parameter can be used
to fine-tune the shares between the clusters for different projects.

The following table shows example configurations with two clusters and 12 hspice
licenses distributed as follows:
DISTRIBUTION = LanServer (Lp1 1 Lp2 1)

ENABLE_INTERACTIVE LOCAL_TO ALLOCATION

No SiteA(clusterA interactive) -

No clusterA Lp1(clusterA 1 clusterB 0)

No clusterA Lp1(clusterA 1)

Lp2(clusterA 1)

About interactive taskman jobs

The License Scheduler command taskman is a job starter for taskman jobs to use
License Scheduler without bsub. taskman checks out a license token and manages
interactive UNIX applications.

You can use the logical AND operator (:) to combine rusage strings and the logical
OR operator (||) to separate rusage string siblings. For example:
taskman -Lp P1 -R "rusage[f1=1:f2=1||f1=5:f3=1||f4=1]" myjob

If you specify multiple rusage string siblings, License Scheduler checks each of the
rusage string siblings from left to right. If at least one of the rusage string sibling

Configuring License Scheduler

60 Using IBM Platform License Scheduler

requirements are met, the task can start. If none of the rusage string sibling
requirements are met, License Scheduler sends the DEMAND of all the unsatisfied
rusage string siblings.

If a particular unsatisfied resource is specified in multiple rusage string siblings,
only the highest value for DEMAND is sent. For example:
taskman -Lp P1 -R "rusage[f1=1:f2=2||f1=3:f2=1]" myjob

The f1 resource requirement is 1 for the first rusage string sibling and 3 for the
second rusage string sibling. If the f1 resource is not satisfied, the demand of f1 is
3, not 3+1. This task will not start until at least one of the requirements of the
rusage string siblings is met.

If LOCAL_TO is specified for a feature, taskman jobs must specify feature names with
locality information similar to submission with bsub. You must know which token
can be used from the location where task is going to run. For example:
taskman -Lp P1 -R "rusage[hspice@siteB=1]" myjob
taskman -Lp P1 -R "rusage[hspice=1]" myjob
taskman -Lp P1 -R "rusage[hspice@clusterA=1]" myjob

Project mode with project groups
Project groups use a ProjectGroup section to build a hierarchical project structure,
which you can use to set limits on projects that span multiple clusters.

Depending on your license usage, you can configure different project groups for
different license features, or reuse the same hierarchical structure.

Each license feature in project mode can either use projects or project groups.
Changing from projects to project groups involves adding a ProjectGroup section
and changing the license token distribution that is configured in the Feature
section. Other configuration remains the same.

Configuring project groups
ProjectGroup sections use configured projects (each with a Projects section in the
lsf.licensescheduler file) to form a hierarchical structure for each feature.

Note:

The Feature section GROUP parameter is used to group projects together, simplifying
configuration, and is not the same as a ProjectGroup section.
1. Add a ProjectGroup section to the lsf.licensescheduler file:

Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
End Projectgroup

If LS_FEATURE_PERCENTAGE=Y or LS_ACTIVE_PERCENTAGE=Y in
lsf.licensescheduler, values for OWNERSHIP, LIMITS, and NON_SHARED are
expressed as a percentage of the total licenses, not as an absolute number.

2. For each branch in the hierarchy, add a line to the ProjectGroup section.
a. Under the heading GROUP, indicate the project that branches, and direct

descendants in the hierarchy (group(member ...)).
b. Under the heading SHARES, set the integer share for each member project.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 61

c. Under the heading OWNERSHIP, set the integer ownership for each
bottom-level group member (leaf node), with a dash (-) representing no
ownership. The OWNERSHIP value must be greater than or equal to the
NON_SHARED value.

d. Under the heading LIMITS set the integer license limit for each member
project, with a dash (-) representing unlimited. The LIMITS value must be
greater than or equal to the OWNERSHIP value.

e. Under the heading NON_SHARED, set the integer number of non-shared
licenses each bottom-level group member (leaf node) uses exclusively, with
’-’ representing none.

f. Optionally, under the heading DESCRIPTION, add a description up to 64
characters long, using a backslash (\) to extend to multiple lines.

For example, the branch g4 splits into three members:
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(g4 (p4 p5 p6)) (1 1 1) (1 1 1) () (- 3 -)

3. In the Feature section, set parameter GROUP_DISTRIBUTION to the top level of the
ProjectGroup section hierarchy.
The DISTRIBUTION parameter that is used for projects is no longer used.

4. In the Feature section, list service domains in the SERVICE_DOMAINS parameter.
Unlike for projects, service domains are not included in the distribution for
project groups.

Project group examples

This hierarchy is implemented by the project group configuration:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(topgrp (g1 g2)) (1 1) () (10 10) ()
(g1 (g3 g4)) (1 1) () (10 10) ()
(g2 (g5 g6)) (1 1) () (- 5) ()
(g3 (p1 p2 p3)) (1 1 2) () (3 4 5) ()
(g4 (p4 p5 p6)) (1 1 1) (1 3 1) () (0 3 0)
(g5 (p7 p8 p9)) (1 1 1) (2 0 2) () (1 0 1)
(g6 (p10 p11 p12)) (1 1 1) (2 2 2) (4 4 4) (1 0 1)
End ProjectGroup

License feature configuration that uses this project group:

Configuring License Scheduler

62 Using IBM Platform License Scheduler

Begin Feature
NAME = AppZ
GROUP_DISTRIBUTION = topgrp
SERVICE_DOMAINS = LanServer WanServer
End Feature

Use the LIMITS column to limit token use, so tokens are sometimes not distributed
even if they are available. By default, License Scheduler distributes all available
tokens if possible. For example, if total of six licenses are available:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(Root(A B)) (1 1) () () ()
(A (c d)) (1 1) () (1 1) ()
(B (e f)) (1 1) () () ()
End ProjectGroup

When there is no demand for license tokens, License Scheduler allocates only five
tokens according to the distribution. License Scheduler gives three tokens to group
A and three tokens to group B, but project c and project d are limited to one token
each, so one token is not allocated within group A. As more demand comes in for
project e and project f, the tokens that are not allocated are distributed to group B.

Configuring preemption priority within project groups
The optional PRIORITY parameter in the ProjectGroup section, if defined, is used for
preemption instead of basing preemption on the accumulated inuse for each
project.

Under the heading PRIORITY, set the integer priority for each group member, with
’0’ being the lowest priority.
PRIORITY can be set for all members in the project group hierarchy.

For example:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED PRIORITY
(root(A B C)) (1 1 1) () () () (3 2 -)
(A (P1 D)) (1 1) () () () (3 5)
(B (P4 P5)) (1 1) () () () ()
(C (P6 P7 P8)) (1 1 1) () () () (8 3 -)
(D (P2 P3)) (1 1) () () () (2 1)
End ProjectGroup

By default, priority is evaluated from top to bottom. The priority of any specific
node is first decided by the priorities of its parent nodes. The values are only
comparable between siblings.

The following figure illustrates the example configuration:

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 63

The priority of each node is shown beside the node name. If priority is not
defined, by default is set to 0 (nodes P4 and P5 under node B).

To find the highest priority leaf node in the tree, License Scheduler traverses the
tree from root to node A to node D to project P2.

To find the lowest priority leaf node in the tree, License Scheduler traverses the
tree from root to node C to project P8.

When two nodes have the same priority, for example, projects P4 and P5, priority
is determined by accumulated inuse usage at the time the priorities are evaluated.

When a leaf node in branch A wants to preempt a token from branch B or C,
branch C is picked because it has a lower priority than branch B.

Viewing hierarchical configuration
Use blinfo -G to view the hierarchical configuration:
For the previous example:
blinfo -G

GROUP SHARES OWNERSHIP LIMITS NON_SHARED DESCRIPTION
(topgrp (g1 g2)) (1 1) () (10 10) () ()
(g1 (g3 g4)) (1 1) () (10 10) () ()
(g2 (g5 g6)) (1 1) () (- 5) () ()
(g3 (p1 p2 p3)) (1 1 2) () (3 4 5) () ()
(g4 (p4 p5 p6)) (1 1 1) (1 3 1) () (0 3 0) ()
(g5 (p7 p8 p9)) (1 1 1) (2 0 2) () (1 0 1) ()
(g6 (p10 p11 p12)) (1 1 1) (2 2 2) (4 4 4) (1 0 1) ()

Viewing information about project groups
Use blstat -G to view the hierarchical dynamic license information.
blstat -G

FEATURE: p1_f1
SERVICE_DOMAINS:
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0
SHARE_INFO_FOR: /topgrp
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
g2 100.0 % 0 0 0 4 0
SHARE_INFO_FOR: /topgrp/g2
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
p3 50.0 % 0 0 0 2 0
p4 50.0 % 0 0 0 2 0
FEATURE: p1_f2
SERVICE_DOMAINS:
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 4 OTHERS: 0
SHARE_INFO_FOR: /topgrp

Configuring License Scheduler

64 Using IBM Platform License Scheduler

GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
g2 100.0 % 0 0 0 4 0
SHARE_INFO_FOR: /topgrp/g2
GROUP/PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
p3 50.0 % 0 0 0 2 0
p4 50.0 % 0 0 0 2 0

Configure fast dispatch project mode
Use fast dispatch project mode to increase license utilization for project licenses.
Fast dispatch project mode has the scheduling performance of cluster mode with
the functionality of project mode, and is most appropriate for your needs if:
v Your primary goals are to maximize license use and ensure ownership of groups
v Most jobs are short relative to the blcollect cycle (60 seconds by default, set by

LM_STAT_INTERVAL).

In fast dispatch project mode, License Scheduler does not have to run the FlexNet
command lmstat to verify that a license is free before each job dispatch. As soon
as a job finishes, the cluster can reuse its licenses for another job of the same
project, which keeps gaps between jobs small. However, because License Scheduler
does not run lmstat to verify that the license is free, there is an increased chance of
a license checkout failure for jobs if the license is already in use by a job in another
project.

Hierarchical project group paths

By default, hierarchical project groups in fast dispatch project mode are the same
as hierarchical project groups in project mode. Fast dispatch project mode also
supports the use of hierarchical project group paths, which helps License Scheduler
dispatch more jobs in fast dispatch project mode. To use hierarchical project group
paths, you need LSF, Version 9.1.1, or later.

The following hierarchical group structure illustrates hierarchical project group
paths:

Enabling hierarchical project group paths enables the following:
v Features can use hierarchical project groups with project and project group

names that are not unique, as long as the projects or project groups do not have
the same parent. That is, you can define projects and project groups in more
than one hierarchical project group.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 65

For example, the p4 project can be defined for project groups g4 and g6, each
with its specific resource allocation within the project groups.

Note: Do not define a project group as a child of itself, because this results in a
loop. For example, if project group g3 is a child of project group g1, do not
define project g1 as a child of g3, as this will result in a loop of g1 and g3 being
child project groups of one another.

v When specifying -Lp license_project, you can use paths to describe the project
hierarchy without specifying the root group.
For example, if you have topgrp as your root group, which has a child project
group named g1 with a child project group named g3, which has a project
named p1, you can use -Lp /g1/g3/p1 to specify this project.

v Hierarchical project groups have a default project named others with a default
share value of 0. Any projects that do not match the defined projects in a project
group are assigned into the others project. If the others project has a share
value of 0, this project can still use licenses if the defined projects with shares
are not using the licenses. Therefore, by default, the others project has the
lowest priority within a project group.
For example, if you have topgrp as your root group, which has a child project
group named g1 with a child project group named g3, which has a project
named p1, if you specify -Lp /g1/g3/project3 (which does not match a project),
the effective license project is /g1/g3/others project. Similarly, specifying -Lp
/g1/g3/gA/gB/gC/project3 results in an effective license project of /g1/g3/others
because there are no subsequent child project groups under /g1/g3.
If there is already a project named others, the preexisting others project
specification overrides the default project.

Defining hierarchical project groups for fast dispatch project mode is the same as
for project mode, allowing for project and project group names that are not unique.

For example, to define the previously-illustrated hierarchical project group in
lsf.licensescheduler:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(topgrp (g1 g2) (1 1) () () ()
(g1 (g3 g4 others) (1 1 1) () () ()
(g2 (g5 g6) (1 2) () () ()
(g3 (p1 p2 others) (2 2 1) () () ()
(g4 (p3 p4) (2 1) () () ()
(g5 (p5 p1) (1 3) () () ()
(g6 (p6 p4) (1 1) () () ()
End ProjectGroup

Begin Feature
NAME=f1
GROUP_DISTRIBUTION=topgrp
SERVICE_DOMAINS=LanServer
End Feature

The others projects are explicitly defined for g1 and g3 (with a specific share),
while the other project groups use the default others projects with 0 share.

The p1 project is defined for both g3 and g5, with a larger share if specified
through the g5 project group. The p4 project is defined for both g4 and g6, with a
larger share if specified through the g6 project group.

Configuring License Scheduler

66 Using IBM Platform License Scheduler

You can also specify different project groups with different root groups. Different
features can use different root groups (as defined by the GROUP_DISTRIBUTION
parameter), each with its own project group hierarchy and share policies.

When a job requests multiple features in fast dispatch project mode, License
Scheduler generates an effective license project for each feature. This means that it
is possible for one job to have multiple effective license projects if the features use
different project group hierarchies. License Scheduler and LSF will calculate the
effective license project for the feature based on its related project group hierarchy.
The effective project is the path of the project resulting from the -Lp specification.

When specifying a project name without a hierarchical project group path in fast
dispatch project mode with hierarchical group paths enabled, License Scheduler
uses the shortest path to the left that ends with the name of the project, as long as
the cluster that submitted the job is authorized to use the selected project. If
License Scheduler cannot find such a project in the hierarchy, License Scheduler
uses the /others project.

For example, the following hierarchical group structure illustrates which clusters
(c1 and c2) are authorized to use each project:

If you specify -Lp p2 from the c2 cluster (by submitting bsub -Lp p2 -R
"rusage[f1=1]" myjob) without specifying a hierarchical group path, c2 is
authorized to use /g2/p2 and /g2/g3/p2. The shortest path to the left that leads to
p2 is /g2/p2, so the job is associated with the /g2/p2 hierarchical project.

Configure parameters
Before configuring fast dispatch project mode, ensure that you enabled and
configured project mode using projects or project groups. However, you can only
specify one service domain per feature in fast dispatch project mode.
1. Fast dispatch project mode can be set globally, or for individual license

features. Set individually when using fast dispatch project mode for some
features and cluster mode or project mode for other features.
a. If you are using fast dispatch project mode for all license features, define

FAST_DISPATCH=Y in the Parameters section of lsf.licensescheduler.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 67

b. If you are using fast dispatch project mode for some license features, define
FAST_DISPATCH=Y for individual license features in the Feature section of
lsf.licensescheduler.
The Feature section setting of FAST_DISPATCH overrides the global Parameter
section setting.

2. Set the limit to which License Scheduler considers the demand by each project
in each cluster when allocating licenses.
The default is 5.
DEMAND_LIMIT=integer

Define DEMAND_LIMIT in the Parameters section of lsf.licensescheduler to
set the limit for all license features, or define DEMAND_LIMIT in the Feature
section for individual license features. Setting in the Feature section overrides
the global setting in the Parameters section.
Periodically, each cluster sends a demand for each project. This is calculated in
a cluster for a project by summing up the rusage of all jobs of the project
pending due to lack of licenses. Whether to count a job's rusage in the demand
depends on the job's pending reason. In general, the demand reported by a
cluster only represents a potential demand from the project. It does not take
into account other resources that are required to start a job. For example, a
demand for 100 licenses is reported for a project. However, if License Scheduler
allocates 100 licenses to the project, the project does not necessarily use all 100
licenses due to slot available, limits, or other scheduling constraints.
mbatchd in each cluster sends a demand for licenses from each project. In fast
dispatch project mode, DEMAND_LIMIT limits the amount of demand from each
project in each cluster that is considered when scheduling.

3. To enable hierarchical project group paths, define PROJECT_GROUP_PATH=Y in the
Parameters section of lsf.licensescheduler.

Note: To use PROJECT_GROUP_PATH, you need LSF, Version 9.1.1, or later.

Restart to implement configuration changes
1. Run bladmin reconfig to restart the bld.
2. If you deleted any Feature sections, restart mbatchd. In this case, a message is

written to the log file, prompting the restart.
If required, run badmin mbdrestart to restart each LSF cluster.

View license allocation
Run blstat -c token_name to view information for a specific license token (as
configured in a Feature section).
blstat -c output differs for fast dispatch project mode, project mode, and cluster
mode.

Configure lmremove preemption
Enable and configure lmremove as a preemption action.

Preemption is enabled by configuring license ownership for a project. When a
project has ownership of licenses that are occupied by another project, these
licenses can be preempted by the project that has ownership when it needs to use
the licenses.

Configuring License Scheduler

68 Using IBM Platform License Scheduler

Begin Feature
NAME = lic1
FAST_DISPATCH= Y
DISTRIBUTION = serviceDomain1(projectA 1/10 projectB 1)
End Feature

The default preemption action is to send a TSTP signal to the job. Some
applications will respond well to this action, and will free up their licenses and
suspend their processes. If your applications respond well to the TSTP signal, leave
this default as the preemption action.

For applications that do not respond well to the TSTP signal, an alternative
preemption action for projects in fast dispatch project mode is to suspend the job’s
processes, then use lmremove to remove licenses from the application. lmremove
causes lmgrd and vendor daemons to close the TCP connection with the
application. Once the application is resumed, it will try to reacquire the licenses. In
general, lmremove will fail to remove licenses from an application for a period of
time after the licenses are checked out. This period depends on the application
itself.

When License Scheduler calls lmremove, it may remove licenses from running jobs
when the running jobs share the same user and host as a suspended job. License
Scheduler will continue to reserve the licenses (from the rusage) for the running
job. Therefore, when the running job tries to reacquire its licenses, there will be
licenses available for it.

License Scheduler calls lmremove in the same directory as it calls the lmstat
command (as defined in the LMSTAT_PATH parameter).
1. Enable lmremove as a preemption action by specifying the LMREMOVE_SUSP_JOBS

parameter in the Parameters or Feature section of lsf.licensescheduler.
LMREMOVE_SUSP_JOBS = seconds

Set this parameter for a license feature in its corresponding Feature section as
long as it is using the fast dispatch project mode. If you set this parameter in
the Parameters section, this applies to all license features using the fast dispatch
project mode. When this parameter is configured for a license feature, License
Scheduler will periodically use lmremove to try to remove the license feature
from each recently-suspended job.
For a given application, set LMREMOVE_SUSP_JOBS to a value greater than the
period following a license checkout that lmremove will fail for that application.
In this way, you can be sure that when a job is suspended, its licenses will be
released. The length of this period depends on the application.
License Scheduler will continue to try removing the license feature for the
specified number of seconds after the job is first suspended.
For example, if you define LMREMOVE_SUSP_JOBS = 10, when a job is suspended
due to preemption,License Scheduler will continue to try removing the license
feature for up to ten seconds after the job is first suspended.

2. Enable License Scheduler to preempt a job immediately after a license checkout
by defining LM_REMOVE_INTERVAL = 0 in the Parameters section of
lsf.licensescheduler.
LM_REMOVE_INTERVAL = 0

Defining this parameter to a larger value prevents License Scheduler from
preempting a job for a period of time after License Scheduler first detects a
license checkout by the job (the default value is 180 seconds). Defining
LM_REMOVE_INTERVAL = 0 ensures that License Scheduler can preempt a job

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 69

immediately after checkout. After the job is suspended, License Scheduler calls
lmremove to release licenses from the job.

3. To limit the amount of time between subsequent forks of child processes to run
lmremove, define the LMREMOVE_SUSP_JOBS_INTERVAL parameter in the Parameters
or section of lsf.licensescheduler.
LMREMOVE_SUSP_JOBS_INTERVAL = seconds

By default, License Scheduler forks a child process to run lmremove every time
it receives an update from a license collector daemon (blcollect). Defining this
parameter controls the minimum amount of time between subsequent forks.

Automatic time-based configuration
Variable time-based configuration is used in both project mode and cluster mode to
automatically change configuration that is set in lsf.licensescheduler based on
time windows. For example, if you have design centers in remote locations, one
use of time-based configuration is to switch ownership of license tokens that are
based on local time of day.

You define automatic configuration changes in lsf.licensescheduler by using
if-else constructs and time expressions. After you change the files, reconfigure the
cluster with the bladmin reconfig command.

The expressions are evaluated by License Scheduler every 10 minutes based on bld
start time. When an expression evaluates true, License Scheduler dynamically
changes the configuration that is based on the associated configuration statements
and restarts bld

The #if, #else, #endif keywords are not interpreted as comments by License
Scheduler, but as if-else constructs.

Syntax
time = hour | hour:minute | day:hour:minute

hour

integer from 0 to 23, representing the hour of the day.

minute

integer from 0 to 59, representing the minute of the hour.

If you do not specify the minute, License Scheduler assumes the first minute of
the hour (:00).

day

integer from 0 to 7, representing the day of the week, where 0 represents every
day, 1 represents Monday, and 7 represents Sunday.

If you do not specify the day, License Scheduler assumes every day. If you do
specify the day, you must also specify the minute.

Specify time values
Specify at least the hour.
Day and minutes are optional.

Configuring License Scheduler

70 Using IBM Platform License Scheduler

Specify time windows
Specify two time values that are separated by a hyphen (-), with no space in
between.
time_window = time1-time2
time1 is the start of the window and time2 is the end of the window. Both time
values must use the same syntax.
Use one of the following ways to specify a time window:
v hour-hour

v hour:minute-hour:minute

v day:hour:minute-day:hour:minute

For example:
v Daily window

To specify a daily window, omit the day field from the time window. Use either
the hour-hour or hour:minute-hour:minute format. For example, to specify a
daily 8:30 a.m. to 6:30 p.m. window:
8:30-18:30

v Overnight window
To specify an overnight window, make time1 greater than time2. For example, to
specify 6:30 p.m. to 8:30 a.m. the following day:
18:30-8:30

v Weekend window
To specify a weekend window, use the day field. For example, to specify Friday
at 6:30 p.m to Monday at 8:30 a.m.:
5:18:30-1:8:30

Specify time expressions
Time expressions use time windows to specify when to change configurations.

Define a time expression.
A time expression is made up of the time keyword followed by one or more
space-separated time windows that are enclosed in parentheses. Use the &&, ||, and
! logical operators to combine time expressions.
expression = time(time_window[time_window ...])

| expression && expression
| expression || expression
| !expression

For example:
Both of the following expressions specify weekends (Friday evening at 6:30 p.m.
until Monday morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m. daily).
time(5:18:30-1:8:30 20:00-8:30)
time(5:18:30-1:8:30) || time(20:00-8:30)

Create if-else constructs
The if-else construct can express single decisions and multi-way decisions by
including elif statements in the construct.
v Define an if-else expression.

#if time(expression)
statement
#else
statement
#endif

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 71

The #endif part is mandatory and the #else part is optional.
v Define an elif expression.

The #elif expressions are evaluated in order. If any expression is true, the
associated statement is used, and this terminates the whole chain.
The #else part handles the default case where no other conditions are satisfied.
#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

When you use #elif, the #else and #endif parts are required.

Restart to implement configuration changes
All time-based configuration is within the lsf.licensescheduler file, so restarting
the bld applies all changes.
1. Run bladmin ckconfig to check configuration.
2. Run lsadmin limrestart or bladmin restart to restart the bld.

Verify configuration
Verify time-based configuration by viewing License Scheduler information.
1. Run blinfo.
2. Run blstat.

Examples
Project configuration in project mode
Begin Feature
NAME = f1
#if time(5:16:30-1:8:30 20:00-8:30)
DISTRIBUTION=Lan(P1 2/5 P2 1)
#elif time(3:8:30-3:18:30)
DISTRIBUTION=Lan(P3 1)
#else
DISTRIBUTION=Lan(P1 1 P2 2/5)
#endif
End Feature

Project group configuration in project mode
#
ProjectGroup section
#
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(group1 (A B)) (1 1) (5 -) () ()
End ProjectGroup

Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(group2 (A B)) (1 1) (- 5) () ()
End ProjectGroup

#
Feature section
#

Configuring License Scheduler

72 Using IBM Platform License Scheduler

Begin Feature
NAME = f1
#if time(5:16:30-1:8:30 20:00-8:30)
GROUP_DISTRIBUTION=group1
#elif time(3:8:30-3:18:30)
GROUP_DISTRIBUTION=group2
#else
GROUP_DISTRIBUTION=group2
#endif
SERVICE_DOMAINS=Lan1 Lan2
End Feature

Cluster distribution configuration in cluster mode
Begin Feature
NAME = f1
#if time(5:16:30-1:8:30 20:00-8:30)
CLUSTER_DISTRIBUTION=Wan(Cl1 1 Cl2 1)
#elif time(3:8:30-3:18:30)
CLUSTER_DISTRIBUTION= Wan(Cl1 2 Cl2 1/2/100) Lan(Cl2 1)
#else
CLUSTER_DISTRIBUTION= Wan(Cl1 10 Cl2 1/1/10) Lan(Cl1 1)
#endif
End Feature

Failover
License maximization

The built-in functionality of License Scheduler helps ensure that your licenses are
always being used efficiently. For example, if the sbatchd encounters any problems,
the job acquires the state UNKNOWN. However, License Scheduler ensures that
any in use licenses continue to be allocated, but charges them to the OTHERS
category until the sbatchd recovers and the job state is known again.

failover host

A master candidate host that runs the License Scheduler daemon (bld), and can
take over license management if the master License Scheduler host fails or loses its
connection to the network (in either a LAN or WAN environment).

failover provisioning

The configuration of a list of failover hosts in the event of a host failure or network
breakdown. License Scheduler can be configured for failover provisioning in both
LANs and WANs.

Failover provisioning for LANs
Configuring failover ensures enhanced performance and reliable license
distribution.

You only need one host to run License Scheduler, but you can configure your site
for a failover mechanism with multiple candidate hosts to take over the scheduling
if there is a failure. This configuration can be used in a local network or across
multiple sites in a wider network.

Define the list of License Scheduler hosts in LSF_CONFDIR/lsf.conf and
lsf.licensescheduler for your LAN (Designer Center A in this example).

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 73

1. lsf.conf: Specify a space-separated list of hosts for the LSF_LIC_SCHED_HOSTS
parameter:
LSF_LIC_SCHED_HOSTS="hostA.designcenter_a.com hostB.designcenter_a.com
hostC.designcenter_a.com"

Tip: List the hosts in order of preference for running License Scheduler, from
most preferred to least preferred.

2. lsf.licensescheduler: Specify a space-separated list of hosts for the HOSTS
parameter:
HOSTS=hostA.designcenter_a.com hostB.designcenter_a.com
hostC.designcenter_a.com

List the hosts in the same order as lsf.conf.

The LIM starts the bld (License Scheduler daemon) on each host in the
LSF_LIC_SCHED_HOSTS list.
Every host in defined in LSF_LIC_SCHED_HOSTS is a failover candidate and runs the
bld daemon.

v hostA.designcenter_a.com is the License Scheduler host, and the remaining
hosts are candidate hosts that are running the bld daemon, ready to take over
the management of the licenses if there is a network failure

v Each host contains the list of candidate hosts in memory
v Each candidate License Scheduler host communicates with the License Scheduler

host, License Scheduler (hostA)
v If the License Scheduler host fails, each candidate host checks to see if a more

eligible host is running the License Scheduler daemon. If not, it becomes the
failover host and inherits the communication links that existed between the
original License Scheduler host and each candidate host. In this example, if
License Scheduler on hostA fails, candidate License Scheduler hostB is the next
most eligible host, and takes over the license scheduling.

Configuring License Scheduler

74 Using IBM Platform License Scheduler

Failover provisioning for WANs
Similar to LANs, you can configure your site for a failover mechanism across
multiple sites in a wide network.

You need only one host to run License Scheduler, but you can configure your site
for a failover mechanism with multiple candidate hosts to take over the scheduling
in a failure.

License scheduling across sites can be streamlined because License Scheduler
supports service provisioning during breaks in wide area network connections.
This support means that you can run License Scheduler from one host that controls
license scheduling across multiple sites.

Configure and start License Scheduler in a WAN
In a WAN configuration:
1. As the root user, install License Scheduler on each cluster in the WAN

configuration and select one cluster to be the main cluster.
2. In the cluster that contains the WAN license server, log on as the primary

License Scheduler administrator.
3. Edit the following items in LSF_CONFDIR/lsf.licensescheduler:

a. Specify a space-separated list of hosts for the HOSTS parameter:
HOSTS=hostname_1 hostname_2 ... hostname_n

Where:
hostname_1 is the most preferred host for running License Scheduler.
hostname_n is the least preferred host for running License Scheduler.

b. In the Clusters section, specify the names of the clusters in the WAN.
For example:
Begin Clusters
CLUSTERS
design_SJ
design_BOS
End Clusters

4. In the cluster that contains the WAN license server, as the LSF primary
administrator, edit LSF_CONFDIR/lsf.conf. Lines that begin with # are
comments:
Specify a space-separated list of hosts for the LSF_LIC_SCHED_HOSTS
parameter:
LSF_LIC_SCHED_HOSTS="hostname_1 hostname_2 ... hostname_n"

Where:
hostname_1, hostname_2, ..., hostname_n are hosts on which the LSF LIM daemon
starts the License Scheduler daemon (bld).
The first host that is listed in the HOSTS list is the default master License
Scheduler host for the WAN.
The order of the host names in LSF_LIC_SCHED_HOSTS is ignored.

5. In the other clusters in the WAN:
a. Configure the LSF_LIC_SCHED_HOSTS parameter in lsf.conf with a local

list of candidate hosts.
b. Configure the HOSTS parameter in the Parameters section

lsf.licensescheduler with the following list of hosts:
v Start the list with the same list of candidate hosts as the HOSTS

parameter in the cluster that contains the WAN license server.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 75

v Continue the list with the local cluster’s list of hosts from the
LSF_LIC_SCHED_HOSTS parameter in lsf.conf.

6. In the cluster that contains the WAN license server and the other clusters in the
WAN, run the following commands:
a. Run bld -C to test for configuration errors.
b. Run bladmin reconfig to configure License Scheduler.
c. Run lsadmin reconfig to reconfigure LIM.
d. Use ps -ef to make sure that bld is running on the candidate hosts.
e. Run badmin reconfig to reconfigure mbatchd.

Tip: Although the bld daemon is started by LIM, bld runs under the account
of the primary License Scheduler administrator. If you did not configure the
LIM to automatically start the bld daemon on your License Scheduler hosts,
run $LSF_BINDIR/blstartup on each host to start the bld daemon.

WAN example
A design center contains the following hosts configuration in a WAN:

LIM starts bld on the following hosts:
v lsf.conf in Design Center A

LSF_LIC_SCHED_HOSTS="hostA1.designcenter_a.com hostA2.designcenter_a.com
hostA3.designcenter_a.com"

v lsf.conf in Design Center B
LSF_LIC_SCHED_HOSTS="hostB1.designcenter_b.com hostB2.designcenter_b.com
hostB3.designcenter_b.com"

License Scheduler candidate hosts are listed in the following order of preference:
v lsf.licensescheduler in Design Center A

HOSTS=hostB1.designcenter_b.com hostB2.designcenter_b.com
hostA1.designcenter_a.com hostA2.designcenter_a.com
hostA3.designcenter_a.com

v lsf.licensescheduler in Design Center B
HOSTS=hostB1.designcenter_b.com hostB2.designcenter_b.com
hostB3.designcenter_b.com

The following diagram shows hostB1.designcenter_b.com, the License Scheduler
host for the WAN containing Design Center A and Design Center B.

Configuring License Scheduler

76 Using IBM Platform License Scheduler

How it works

The LSF LIM daemon starts the License Scheduler daemon (bld) on each host that
is listed in LSF_LIC_SCHED_HOSTS in Design Center A and Design Center B.

Each host in the HOSTS list in Design Center A is a potential License Scheduler
candidate in Design Center A and is running the bld daemon, but only one host
becomes the License Scheduler host: the first host in the HOSTS list that is up and
that is running the bld daemon. Similarly, the License Scheduler host in Design
Center B is the first host in the HOSTS list that is up and that is running the bld
daemon.

License Scheduler manages the licenses in Design Center A and Design Center B as
follows:
v Both design centers list hostB1.designcenter_b.com at the top of their HOSTS

lists.
v hostB1.designcenter_b.com is the License Scheduler host for Design Center A

and for Design Center B.
v The rest of the hosts in both design centers remain on standby as candidate

License Scheduler hosts.
v License Scheduler manages the license scheduling across the WAN connection.

Service provisioning at the host and network levels
In the following example configuration, there are two potential points of failure:
host and network.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 77

Host failure

If hostB1.designcenter_b.com fails, and bld stops running, a candidate License
Scheduler host must take over the license management. The next host on the
HOSTS list in both Design Center A and Design Center B is
hostB2designcenter_b.com. License Scheduler fails over to this host if it is up and
running.

Network failure

If the network connection between Design Center A and Design Center B breaks,
Design Center A can no longer communicate with the hosts in Design Center B, so
hostB1.designcenter_b.com and hostB2.designcenter_b.com are no longer
candidate license scheduling hosts for Design Center A. The next candidate host
for Design Center A is hostA1.designcenter_a.com. License management then runs
locally in Design Center A on hostA1.designcenter_a.com. In Design Center B,
hostB1.designcenter_b.com continues to run License Scheduler, but only manages
the local network if the wide area network connection is down.

The local License Scheduler host, hostA1.designcenter_a.com, checks for a
heartbeat from hostB1.designcenter_b.com at regular intervals, then returns license
management back to hostB1.designcenter_b.com when the network connection
returns.

Configuring License Scheduler

78 Using IBM Platform License Scheduler

Set up fod
The fod daemon manages failover for the blcollect daemons. fod can restart any
failed blcollect processes if the local host (and thus the local fod) is down. The
failover host fod starts new blcollect daemons until the primary host comes back
online and the primary fod contacts the secondary fod.

The fod files are in the License Scheduler package, but must be copied, configured,
and started manually.
1. Install the failover daemon (fod) files on each host.

a. Create a directory to hold the fod files, with subdirectories bin, conf, etc,
and man.
For example: /usr/local/fod

b. Copy all user command files and the fod.shell file to .../bin.
c. Copy the fod.conf file to .../conf.
d. Copy the fod file to .../etc.
e. Copy the fodapps.1, fodhosts.1 and fodid.1 files to .../man/man1.
f. Copy the fod.conf.5 file to .../man/man5.
g. Copy the fodadmin.8 file to .../man/man8.

2. Edit the fod.shell file, and set the FOD_ROOT parameter to the name of your
new directory.
For example: FOD_ROOT=/usr/local/fod

3. Set the environment variables.
a. Set the PATH environment variable to include the /bin directory.
b. Set the FOD_ENVDIR environment variable to $FOD_ROOT/conf.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 79

c. Set the MANPATH environment variable to include the /man directory.
4. In fod.conf, set the required parameters.

v FOD_ADMIN: The License Scheduler administrator
v FOD_PORT: The TCP listening port and UDP port for the failover daemon
v FOD_WORK_DIR: The working directory
v FOD_LOG_DIR: The log directory
For example:
FOD_CLUSTERNAME = fod

FOD_ADMIN = lsadmin

FOD_PORT = 9583

FOD_WORK_DIR = /usr/local/fod/work

FOD_LOG_DIR = /usr/local/fod/work

5. In the Hosts section of fod.conf, specify the hosts where the failover daemons
run.
If your hosts run in different DNS domains, you must use a fully qualified
domain name when you specify the host name. The first host in the Hosts
section is the first host on which the failover daemon runs (the master failover
daemon host).
For example:
Begin Hosts
HOSTNAME
fodhost1.domain_name
fodhost2
End Host

6. Modify the Applications section of fod.conf.
Begin Applications
NAME PATH PARAMS FATAL_EXIT_VALUE
blcollect /pcc/apps/lsf6/6.0/sparc-sol7-64/etc (-2 -m "sasun3 augustus claudius" -p 9581 -c lan -i 20
-D /sparc-sol7-64/etc) (-)
End Applications

7. Start fod on each host.
a. Log on as the Platform License Scheduler administrator.
b. Source the LSF environment.

v For csh or tsh run source LSF_TOP/conf/cshrc.lsf

v For sh, ksh, or bash, run . LSF_TOP/conf/profile.lsf

c. Launch the failover daemons by running the fod.shell file.
Check the progress of a successful launch by running ps -ef.
View the fod log under $LSF_LOGDIR.
Check configuration from $FOD_ROOT/etc by running fod -C.

User authentication
When a user claims a job belongs to a project, License Scheduler checks if this user
belongs to this project, since projects assign fairshare priority and preemption is
based on ownership. When users submit jobs to license projects they do not belong
to, the request is refused or the job gets put in a "default" bucket with a low
number of shares or no shares at all.

Administrators can control who can run what project. By default, such
authentication is not enabled for compatibility with the previous versions of
License Scheduler. When enabled, user authentication has the following behavior:

Configuring License Scheduler

80 Using IBM Platform License Scheduler

v If the user belongs to the project, License Scheduler allows the license request.
v If the user does not belong to the project or the project does not match any

projects in the configuration, License Scheduler rejects the request.
v If a default project is configured in the License Scheduler user authentication

configuration file ls.users, License Scheduler changes the project to default and
allows the license request.

v If the project is default, no authentication is needed and License Scheduler
allows the request.

Enable user authentication
1. To enable user authentication for LSF jobs, configure LSF to use authentication

esub (esub.ls_auth).
Define LSB_ESUB_METHOD=lsauth in lsf.conf.

2. To enable user authentication for taskman jobs, define AUTH=Y in
lsf.licensescheduler.

3. Configure users and their associated projects in the LSF_CONFDIR/ls.users file.
The file defines one project per line using the following format:
project_name:::[user_name][,user_name2 ...]

For example,
Project1:::user1,user2
default:::

Note: Ensure that projects in ls.users, including the default project, conform
to the lsf.licensescheduler configuration.

Configuring License Scheduler

Chapter 4. Configuring License Scheduler 81

Configuring License Scheduler

82 Using IBM Platform License Scheduler

Chapter 5. Viewing information and troubleshooting

About viewing available licenses
The license server collects license feature information from physical servers and
merges this data together into a service domain. After merging the data, the
individual license server information is retained and you can view this information
together with the physical server information.

The licenses in use are checked out from FlexNet by your projects. Free licenses
and licenses that are reserved by a project are not yet checked out from FlexNet.

The total number of licenses could change as licenses expire or are added. As
non-LSF users check out licenses, the OTHERS count in blstat increases and the
TOTAL_FREE count decreases. The number of licenses for each project changes
whenever LSF redistributes license tokens among competing projects.

View license server and license feature information passed to
jobs

You can display the license servers that are used by each service domain that is
allocated to the license features.

Run blstat -S.
blstat -S
FEATURE: feature1
SERVICE_DOMAIN: domain1
SERVERS INUSE FREE
server1 1 0
server2 0 1
TOTAL 1 1
SERVICE_DOMAIN: domain2
SERVERS INUSE FREE
server3 1 0
TOTAL 1 0

The license feature feature1 is assigned to server1 and server2 in the domain1
service domain and server3 in the domain2 service domain. A job uses the feature1
license feature when the job is submitted with "rusage[feature1=1]" as the rusage
string.

View license usage
Run blstat -s to display license usage.
blstat -s
FEATURE: p1_f2
SERVICE_DOMAIN: app_1 TOTAL_LICENSE: 10
LSF_USE LSF_DESERVE LSF_FREE NON_LSF_USE NON_LSF_DESERVE NON_LSF_FREE

0 10 10 0 0 0
FEATURE: p1_f1
SERVICE_DOMAIN: app_1 TOTAL_LICENSE: 5
LSF_USE LSF_DESERVE LSF_FREE NON_LSF_USE NON_LSF_DESERVE NON_LSF_FREE

0 5 5 0 0 0

If there are any distribution policy violations, blstat marks these violations with
an asterisk (*) at the beginning of the line.

© Copyright IBM Corp. 1992, 2013 83

View workload distribution information
Run blinfo -a to display WORKLOAD_DISTRIBUTION information.
blinfo -a
FEATURE MODE SERVICE_DOMAIN TOTAL DISTRIBUTION
g1 Project LS 10 [p1, 50.0%] [p2, 50.0%]

WORKLOAD_DISTRIBUTION
[LSF 66.7%, NON_LSF 33.3%]

Sort license feature information
You can sort license feature information alphabetically, by total licenses, or by
available licenses.

The value of total licenses is calculated with the number of licenses LSF workload
deserves from all service domains that supply licenses to the feature, regardless of
whether non-LSF workload borrowed licenses from LSF workload.
v Sort alphabetically:

blstat -o alpha

v Sort by total licenses:
blstat -o total

The feature with the largest number of total licenses displays first.
v Sort by available licenses:

blstat -o avail

The feature with the largest number of available licenses displays first.
You can also run blstat -o with options -Lp, -t, -D, -G, -s, -S.

Note:

The values of "total licenses" and "licenses available" are calculated differently
when blstat -o is used with different options:
– Options -Lp, -t, -D, -G: Total licenses means the sum of licenses that are

allocated to LSF workload from all the service domains that are configured to
supply licenses to the feature. Licenses that are borrowed by non-LSF
workload are subtracted from this sum.

– Options-s, -S: Total licenses means all the licenses (supplied by the license
vendor daemon) from all the service domains that are configured to supply
licenses to that feature.

Limitations with viewing multiple jobs running on an execution
host
If there are multiple jobs submitted by a user that run on the same execution host,
blstat might not display the correct license usage information. This is because
lmstat only provides the user and host information of each license checkout, but
does not provide additional information for License Scheduler to match the license
checkout to a specific LSF job.

License Scheduler attempts to match the license checkout to each LSF job based on
the user, execution host, and rusage string. If the multiple jobs running on the
same execution host are submitted by the same user and request the same license,
the information that lmstat provides is insufficient for License Scheduler to
provide an exact match for each LSF job. License Scheduler estimates the job, but
this may be incorrect.

For example,

Viewing information and troubleshooting

84 Using IBM Platform License Scheduler

v There are multiple service domains providing the same feature and a user
submits multiple jobs that run on the same execution host.
Although License Scheduler dispatches the tokens correctly, blstat might not
show the correct token usage (such as TOTAL_INUSE, TOTAL_RESERVE, or
TOTAL_FREE). Incorrect tokens are counted in OTHERS.

v There is one license server with multiple projects and a user submits multiple
jobs with some jobs reserving tokens for a time. The jobs that reserve tokens are
running on the same host as other License Scheduler jobs.
Although License Scheduler dispatches the tokens correctly, blstat may show
reversed token usage, so that some INUSE tokens are counted in RESERVED,
and some RESERVED tokens are counted in INUSE.

About error logs
Error logs maintain important information about License Scheduler operations.

Tip: Log files grow over time. Occasionally clear or back up these files (manually
or using automatic scripts).

Log files are reopened each time that a message is logged, so if you rename or
remove a daemon log file, the daemons automatically create a new log file.

The location of log files is specified with the parameter LSF_LOGDIR in lsf.conf.

The error log file names for the LSF License Scheduler system daemons are:
v bld.log.host_name

v blcollect.log.host_name

About blcollect log messages

Messages that are logged by blcollect include the following information:
v Time: The message log time.
v blcollect name: The service domain name, which is the license server host

name, accessed by blcollect as defined in lsf.licensescheduler.
v Status report for feature collection: blcollect information that gathered

successfully or not.
v Detailed information: The number of tokens, the name of tokens, the license

server name for license tokens that are collected by blcollect.

Manage log files
License Scheduler logs error messages at different levels so that you can choose to
log all messages or only log messages that are deemed critical.
1. Set LS_LOG_MASK in lsf.licensescheduler to the wanted logging level.

Note:

If LS_LOG_MASK is not defined, the value of LSF_LOG_MASK in lsf.conf is
used. If LS_LOG_MASK or LSF_LOG_MASK are not defined, the default is
LOG_WARNING.
Log levels (highest to lowest):
v LOG_WARNING: Default. Essential error messages only.

Viewing information and troubleshooting

Chapter 5. Viewing information and troubleshooting 85

v LOG_DEBUG: Fewest number of debug messages, useful for debugging a
problem.

v LOG_DEBUG1: More debug messages than LOG_DEBUG.
v LOG_DEBUG2: Most frequently used debug level.
v LOG_DEBUG3: All debug messages. Use sparingly.
Messages that are logged at the specified level and higher are recorded, while
lower-level messages are discarded.

2. Clean up or back up log files periodically.

Temporarily change the log level
You must submit the commands from the host on which the daemon is running
(only applicable to the bld).

You can temporarily change the class or message log level for the bld and
blcollect daemons without changing lsf.licensescheduler.

The message log level that you set is in effect from the time you set it until you
turn it off or the daemon stops running, whichever is sooner. If the daemon is
restarted, its message log level is reset back to the value of LS_LOG_MASK and the
log file is stored in the directory that is specified by LSF_LOGDIR.
1. Set the log level for the bld.

bladmin blddebug [-l debug_level] [-c class_name]
For example:
bladmin blddebug -l 1 -c "LC_TRACE LC_FLEX"

Logs messages for bld running on the local host and sets the log message level
to LOG_DEBUG1. The log class is LC_TRACE LC_FLEX.

2. Set the log level for blcollect.
bladmin blcdebug [-l debug_level] collector_name ... | all

For example:
bladmin blcdebug -l 3 all

The log mask of all collectors is changed to LOG_DEBUG3.
3. Return the debug settings to their configured values (set with LS_LOG_MASK in

lsf.licensescheduler).
bladmin blddebug -o

bladmin blcdebug -o

For a detailed description of these commands and their options, see the IBM
Platform LSF Command Reference.

Troubleshooting
Techniques
v Run blstat to check the current license usage information.
v Run blusers to check the current job and license usage. This information is the

set intersection of License Scheduler Jobs and FlexNet information.
v Run blinfo command to check the current License Scheduler configuration.
v Run BLD -C to check that the configuration is correct. This action, with

LOG_DEBUG, writes detailed configuration settings to the debug log.
v Turn on debugging by setting LSF_LOG_MASK=LOG_DEBUG and reconfiguring the

daemon with bladmin reconfig all.

Viewing information and troubleshooting

86 Using IBM Platform License Scheduler

v Set the log class for mbatchd debug (LSB_DEBUG_MBD) in lsf.conf: LC_LICSCHED.
v Use LSB_TIME_SCH=timelevel (similar to LSB_TIME_MBD) in lsf.conf to enable the

logging of timing information.
v Run bhosts -s to check that the resources are being reported correctly to LSF.

File locations
v BLD logs are in the standard $LSF_LOGDIR.
v BLCOLLECT logs are in /tmp or $LSF_LOGDIR on the hosts the daemon is running.
v Core files from BLD, BLCOLLECT, mbatchd, lim, and mbsched are in /tmp on the

daemon local hosts.

Check that lmstat is supported by blcollect
1. Create shell script to output (for example, echo) target lmstat output.
2. Point LMSTAT_PATH in lsf.licensescheduler to the shell script.
3. If LIC_COLLECTOR is not set, restart the bld to restart blcollect. If LIC_COLLECTOR

is set, kill blcollect and restart blcollect manually.
4. Observe the blcollect log to view if there are any errors to determine whether

blcollect is able to parse lmstat output properly.

Viewing information and troubleshooting

Chapter 5. Viewing information and troubleshooting 87

Viewing information and troubleshooting

88 Using IBM Platform License Scheduler

Chapter 6. Reference

lsf.licensescheduler
The lsf.licensescheduler file contains License Scheduler configuration
information. All sections except ProjectGroup are required. In cluster mode, the
Project section is also not required.

Changing lsf.licensescheduler configuration

After making any changes to lsf.licensescheduler, run the following commands:
v bladmin reconfig to reconfigure bld

v If you made the following changes to this file, you may need to restart mbatchd:
– Deleted any feature.
– Deleted projects in the DISTRIBUTION parameter of the Feature section.
In these cases a message is written to the log file prompting the restart.
If you have added, changed, or deleted any Feature or Projects sections, you
may need to restart mbatchd. In this case a message is written to the log file
prompting the restart.
If required, run badmin mbdrestart to restart each LSF cluster.

Parameters section
Description

Required. Defines License Scheduler configuration parameters.

Parameters section structure

The Parameters section begins and ends with the lines Begin Parameters and End
Parameters. Each subsequent line describes one configuration parameter.
Mandatory parameters are as follows:
Begin Parameters
ADMIN=lsadmin
HOSTS=hostA hostB hostC
LMSTAT_PATH=/etc/flexlm/bin
LM_STAT_INTERVAL=30
PORT=9581
End Parameters

Parameters
v ADMIN
v AUTH
v BLC_HEARTBEAT_FACTOR
v CHECKOUT_FROM_FIRST_HOST_ONLY
v CLUSTER_MODE
v DEMAND_LIMIT
v DISTRIBUTION_POLICY_VIOLATION_ACTION
v ENABLE_INTERACTIVE
v FAST_DISPATCH

© Copyright IBM Corp. 1992, 2013 89

v HEARTBEAT_INTERVAL
v HEARTBEAT_TIMEOUT
v HIST_HOURS
v HOSTS
v INUSE_FROM_RUSAGE
v LIB_CONNTIMEOUT
v LIB_RECVTIMEOUT
v LM_REMOVE_INTERVAL
v LM_STAT_INTERVAL
v LM_STAT_TIMEOUT
v LMREMOVE_SUSP_JOBS
v LMREMOVE_SUSP_JOBS_INTERVAL
v LMSTAT_PATH
v LOG_EVENT
v LOG_INTERVAL
v LS_DEBUG_BLC
v LS_DEBUG_BLD
v LS_ENABLE_MAX_PREEMPT
v LS_LOG_MASK
v LS_MAX_STREAM_FILE_NUMBER
v LS_MAX_STREAM_SIZE
v LS_MAX_TASKMAN_PREEMPT
v LS_MAX_TASKMAN_SESSIONS
v LS_STREAM_FILE
v LS_PREEMPT_PEER
v MBD_HEARTBEAT_INTERVAL
v MBD_REFRESH_INTERVAL
v MERGE_BY_SERVICE_DOMAIN
v PEAK_INUSE_PERIOD
v PORT
v PREEMPT_ACTION
v PROJECT_GROUP_PATH
v REMOTE_LMSTAT_PROTOCOL
v STANDBY_CONNTIMEOUT

ADMIN
Syntax

ADMIN=user_name ...

Description

Defines the License Scheduler administrator using a valid UNIX user account. You
can specify multiple accounts.

Used for both project mode and cluster mode.

lsf.licensescheduler

90 Using IBM Platform License Scheduler

AUTH
Syntax

AUTH=Y

Description

Enables License Scheduler user authentication for projects for taskman jobs.

Used for both project mode and cluster mode.

BLC_HEARTBEAT_FACTOR
Syntax

BLC_HEARTBEAT_FACTOR=integer

Description

Enables bld to detect blcollect failure. Defines the number of times that bld
receives no response from a license collector daemon (blcollect) before bld resets
the values for that collector to zero. Each license usage reported to bld by the
collector is treated as a heartbeat.

Used for both project mode and cluster mode.

Default

3

CHECKOUT_FROM_FIRST_HOST_ONLY
Syntax

CHECKOUT_FROM_FIRST_HOST_ONLY=Y

Description

If enabled, License Scheduler to only consider user@host information for the first
execution host for a parallel job when merging the license usage data. Setting in
individual Feature sections overrides the global setting in the Parameters section.

If disabled, License Scheduler attempts to check out user@host keys in the parallel
job constructed using the user name and all execution host names, and merges the
corresponding checkout information on the service domain if found. In addition, if
MERGE_BY_SERVICE_DOMAIN=Y is defined, License Scheduler merges multiple
user@host data for parallel jobs across different service domains.

Default

Undefined (N).License Scheduler attempts to check out user@host keys in the
parallel job constructed using the user name and all execution host names, and
merges the corresponding checkout information on the service domain if found.

CLUSTER_MODE
Syntax

CLUSTER_MODE=Y

lsf.licensescheduler

Chapter 6. Reference 91

Description

Enables cluster mode (instead of project mode) in License Scheduler. Setting in
individual Feature sections overrides the global setting in the Parameters section.

Cluster mode emphasizes high utilization of license tokens above other
considerations such as ownership. License ownership and sharing can still be
configured, but within each cluster instead of across multiple clusters. Preemption
of jobs (and licenses) also occurs within each cluster instead of across clusters.

Cluster mode was introduced in License Scheduler 8.0. Before cluster mode was
introduced, project mode was the only choice available.

Default

Not defined (N). License Scheduler runs in project mode.

DEMAND_LIMIT
Syntax

DEMAND_LIMIT=integer

Description

Sets a limit to which License Scheduler considers the demand by each project in
each cluster when allocating licenses. Setting in the Feature section overrides the
global setting in the Parameters section.

Used for fast dispatch project mode only.

When enabled, the demand limit helps prevent License Scheduler from allocating
more licenses to a project than can actually be used, which reduces license waste
by limiting the demand that License Scheduler considers. This is useful in cases
when other resource limits are reached, License Scheduler allocates more tokens
than Platform LSF can actually use because jobs are still pending due to lack of
other resources.

When disabled (that is, DEMAND_LIMIT=0 is set), License Scheduler takes into
account all the demand reported by each cluster when scheduling.

DEMAND_LIMIT does not affect the DEMAND that blstat displays. Instead, blstat
displays the entire demand sent for a project from all clusters. For example, one
cluster reports a demand of 15 for a project. Another cluster reports a demand of
20 for the same project. When License Scheduler allocates licenses, it takes into
account a demand of five from each cluster for the project and the DEMAND that
blstat displays is 35.

Periodically, each cluster sends a demand for each project. This is calculated in a
cluster for a project by summing up the rusage of all jobs of the project pending
due to lack of licenses. Whether to count a job's rusage in the demand depends on
the job's pending reason. In general, the demand reported by a cluster only
represents a potential demand from the project. It does not take into account other
resources that are required to start a job. For example, a demand for 100 licenses is
reported for a project. However, if License Scheduler allocates 100 licenses to the
project, the project does not necessarily use all 100 licenses due to slot available,
limits, or other scheduling constraints.

lsf.licensescheduler

92 Using IBM Platform License Scheduler

In project mode and fast dispatch project mode, mbatchd in each cluster sends a
demand for licenses from each project. In project mode, License Scheduler assumes
that each project can actually use the demand that is sent to it. In fast dispatch
project mode, DEMAND_LIMIT limits the amount of demand from each project in each
cluster that is considered when scheduling.

Default

5

DISTRIBUTION_POLICY_VIOLATION_ACTION
Syntax

DISTRIBUTION_POLICY_VIOLATION_ACTION=(PERIOD reporting_period CMD
reporting_command)

reporting_period

Specify the keyword PERIOD with a positive integer representing the interval
(a multiple of LM_STAT_INTERVAL periods) at which License Scheduler
checks for distribution policy violations.

reporting_command

Specify the keyword CMD with the directory path and command that License
Scheduler runs when reporting a violation.

Description

Optional. Defines how License Scheduler handles distribution policy violations.
Distribution policy violations are caused by non-LSF workloads; License Scheduler
explicitly follows its distribution policies.

License Scheduler reports a distribution policy violation when the total number of
licenses given to the LSF workload, both free and in use, is less than the LSF
workload distribution specified in WORKLOAD_DISTRIBUTION. If License
Scheduler finds a distribution policy violation, it creates or overwrites the
LSF_LOGDIR/bld.violation.service_domain_name.log file and runs the user
command specified by the CMD keyword.

Used for project mode only.

Example

The LicenseServer1 service domain has a total of 80 licenses, and its workload
distribution and enforcement is configured as follows:
Begin Parameter
...
DISTRIBUTION_POLICY_VIOLATION_ACTION=(PERIOD 5 CMD /bin/mycmd)
...
End Parameter

Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1(Lp1 1 Lp2 2)
WORKLOAD_DISTRIBUTION=LicenseServer1(LSF 8 NON_LSF 2)
End Feature

lsf.licensescheduler

Chapter 6. Reference 93

According to this configuration, 80% of the available licenses, or 64 licenses, are
available to the LSF workload. License Scheduler checks the service domain for a
violation every five scheduling cycles, and runs the /bin/mycmd command if it
finds a violation.

If the current LSF workload license usage is 50 and the number of free licenses is
10, the total number of licenses assigned to the LSF workload is 60. This is a
violation of the workload distribution policy because this is less than the specified
LSF workload distribution of 64 licenses.

ENABLE_INTERACTIVE
Syntax

ENABLE_INTERACTIVE=Y

Description

Optional. Globally enables one share of the licenses for interactive tasks.

Tip:

By default, ENABLE_INTERACTIVE is not set. License Scheduler allocates licenses
equally to each cluster and does not distribute licenses for interactive tasks.

Used for project mode only.

FAST_DISPATCH
Syntax

FAST_DISPATCH=Y

Description

Enables fast dispatch project mode for the license feature, which increases license
utilization for project licenses. Setting in the Feature section overrides the global
setting in the Parameters section.

Used for project mode only.

When enabled, License Scheduler does not have to run the FlexNet command
lmstat to verify that a license is free before each job dispatch. As soon as a job
finishes, the cluster can reuse its licenses for another job of the same project, which
keeps gaps between jobs small. However, because License Scheduler does not run
lmstat to verify that the license is free, there is an increased chance of a license
checkout failure for jobs if the license is already in use by a job in another project.

The fast dispatch project mode supports the following parameters in the Feature
section:
v ALLOCATION
v DEMAND_LIMIT
v DISTRIBUTION
v FLEX_NAME
v GROUP_DISTRIBUTION
v LS_FEATURE_PERCENTAGE

lsf.licensescheduler

94 Using IBM Platform License Scheduler

v NAME
v NON_SHARED_DISTRIBUTION
v SERVICE_DOMAINS
v WORKLOAD_DISTRIBUTION

The fast dispatch project mode also supports the MBD_HEARTBEAT_INTERVAL
parameter in the Parameters section.

Other parameters are not supported, including those that project mode supports,
such as the following parameters:
v ACCINUSE_INCLUDES_OWNERSHIP
v DYNAMIC
v GROUP
v LOCAL_TO
v LS_ACTIVE_PERCENTAGE

Default

Not defined (N). License Scheduler runs in project mode without fast dispatch.

HEARTBEAT_INTERVAL
Syntax

HEARTBEAT_INTERVAL=seconds

Description

The time interval between bld heartbeats indicating the bld is still running.

Default

60 seconds

HEARTBEAT_TIMEOUT
Syntax

HEARTBEAT_TIMEOUT=seconds

Description

The time a slave bld waits to hear from the master bld before assuming it has
died.

Default

120 seconds

HIST_HOURS
Syntax

HIST_HOURS=hours

lsf.licensescheduler

Chapter 6. Reference 95

Description

Determines the rate of decay the accumulated use value used in fairshare and
preemption decisions. When HIST_HOURS=0, accumulated use is not decayed.

Accumulated use is displayed by the blstat command under the heading
ACUM_USE.

Used for project mode only.

Default

5 hours. Accumulated use decays to 1/10 of the original value over 5 hours.

HOSTS
Syntax

HOSTS=host_name.domain_name ...

Description

Defines License Scheduler hosts, including License Scheduler candidate hosts.

Specify a fully qualified host name such as hostX.mycompany.com. You can omit the
domain name if all your License Scheduler clients run in the same DNS domain.

Used for both project mode and cluster mode.

INUSE_FROM_RUSAGE
Syntax

INUSE_FROM_RUSAGE=Y|N

Description

When not defined or set to N, the INUSE value uses rusage from bsub job
submissions merged with license checkout data reported by blcollect (as reported
by blstat).

When INUSE_FROM_RUSAGE=Y, the INUSE value uses the rusage from bsub job
submissions instead of waiting for the blcollect update. This can result in faster
reallocation of tokens when using dynamic allocation (when ALLOC_BUFFER is set).

When for individual license features, the Feature section setting overrides the
global Parameters section setting.

Used for cluster mode only.

Default

N

LIB_CONNTIMEOUT
Syntax

LIB_CONNTIMEOUT=seconds

lsf.licensescheduler

96 Using IBM Platform License Scheduler

Description

Specifies a timeout value in seconds for communication between License Scheduler
and LSF APIs. LIB_CONNTIMEOUT=0 indicates no timeout.

Used for both project mode and cluster mode.

Default

5 seconds

LIB_RECVTIMEOUT
Syntax

LIB_RECVTIMEOUT=seconds

Description

Specifies a timeout value in seconds for communication between License Scheduler
and LSF.

Used for both project mode and cluster mode.

Default

5 seconds

LM_REMOVE_INTERVAL
Syntax

LM_REMOVE_INTERVAL=seconds

Description

Specifies the minimum time a job must have a license checked out before lmremove
can remove the license (using preemption). lmremove causes lmgrd and vendor
daemons to close the TCP connection with the application, then retries the license
checkout.

License Scheduler only considers preempting a job after this interval has elapsed.
LM_REMOVE_INTERVAL overrides the LS_WAIT_TO_PREEMPT value if LM_REMOVE_INTERVAL
is larger.

When using lmremove as part of the preemption action (LMREMOVE_SUSP_JOBS),
define LM_REMOVE_INTERVAL=0 to ensure that License Scheduler can preempt a job
immediately after checkout. After suspending the job, License Scheduler then uses
lmremove to release licenses from the job.

Used for both project mode and cluster mode.

Default

180 seconds

lsf.licensescheduler

Chapter 6. Reference 97

LM_STAT_INTERVAL
Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that License Scheduler makes to collect
license usage information from FlexNet license management.

Default

60 seconds

LM_STAT_TIMEOUT
Syntax

LM_STAT_TIMEOUT=seconds

Description

Sets the timeout value passed to the lmstat (or lmutil lmstat) command. The
Parameters section setting is overwritten by the ServiceDomain setting, which is
overwritten by the command line setting (blcollect -t timeout).

Used for both project mode and cluster mode.

Default

180 seconds

LMREMOVE_SUSP_JOBS
Syntax

LMREMOVE_SUSP_JOBS=seconds

Description

Enables License Scheduler to use lmremove to remove license features from each
recently-suspended job. After enabling this parameter, the preemption action is to
suspend the job's processes and use lmremove to remove licences from the
application. lmremove causes lmgrd and vendor daemons to close the TCP
connection with the application.

License Scheduler continues to try removing the license feature for the specified
number of seconds after the job is first suspended. When setting this parameter for
an application, specify a value greater than the period following a license checkout
that lmremove will fail for the application. This ensures that when a job suspends,
its licenses are released. This period depends on the application.

When using lmremove as part of the preemption action, define
LM_REMOVE_INTERVAL=0 to ensure that License Scheduler can preempt a job
immediately after checkout. After suspending the job, License Scheduler then uses
lmremove to release licenses from the job.

This parameter applies to all features in fast dispatch project mode.

lsf.licensescheduler

98 Using IBM Platform License Scheduler

Used for fast dispatch project mode only.

Default

Undefined. The default preemption action is to send a TSTP signal to the job.

LMREMOVE_SUSP_JOBS_INTERVAL
Syntax

LMREMOVE_SUSP_JOBS_INTERVAL=seconds

Description

Specifies the minimum length of time between subsequent child processes that
License Scheduler forks to run lmremove every time it receives an update form a
license collector daemon (blcollect).

Use this parameter when using lmremove as part of the preemption action
(LMREMOVE_SUSP_JOBS).

Used for fast dispatch project mode only.

Default

0

LMSTAT_PATH
Syntax

LMSTAT_PATH=path

Description

Defines the full path to the location of the FlexNet command lmutil (or lmstat).

Used for project mode, fast dispatch project mode, and cluster mode.

LOG_EVENT
Syntax

LOG_EVENT=Y

Description

Enables logging of License Scheduler events in the bld.stream file.

Default

Not defined. Information is not logged.

LOG_INTERVAL
Syntax

LOG_INTERVAL=seconds

lsf.licensescheduler

Chapter 6. Reference 99

|

Description

The interval between token allocation data logs in the data directory

Default

60 seconds

LS_DEBUG_BLC
Syntax

LS_DEBUG_BLC=log_class

Description

Sets the debugging log class for the License Scheduler blcollect daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to blcollect. Only messages belonging
to the specified log class are recorded.

LS_DEBUG_BLC sets the log class and is used in combination with LS_LOG_MASK,
which sets the log level. For example:
LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLC="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation
marks. For example:
LS_DEBUG_BLC="LC_TRACE"

You need to restart the blcollect daemons after setting LS_DEBUG_BLC for your
changes to take effect.

Valid values

Valid log classes are:
v LC_AUTH and LC2_AUTH: Log authentication messages
v LC_COMM and LC2_COMM: Log communication messages
v LC_FLEX - Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
v LC_PERFM and LC2_PERFM: Log performance messages
v LC_PREEMPT - Log license preemption policy messages
v LC_RESREQ and LC2_RESREQ: Log resource requirement messages
v LC_SYS and LC2_SYS: Log system call messages
v LC_TRACE and LC2_TRACE: Log significant program walk steps
v LC_XDR and LC2_XDR: Log everything transferred by XDR

Default

Not defined.

LS_DEBUG_BLD
Syntax

LS_DEBUG_BLD=log_class

lsf.licensescheduler

100 Using IBM Platform License Scheduler

Description

Sets the debugging log class for the License Scheduler bld daemon.

Used for both project mode and cluster mode.

Specifies the log class filtering to be applied to bld. Messages belonging to the
specified log class are recorded. Not all debug message are controlled by log class.

LS_DEBUG_BLD sets the log class and is used in combination with MASK, which
sets the log level. For example:
LS_LOG_MASK=LOG_DEBUG LS_DEBUG_BLD="LC_TRACE"

To specify multiple log classes, use a space-separated list enclosed in quotation
marks. For example:
LS_DEBUG_BLD="LC_TRACE"

You need to restart the bld daemon after setting LS_DEBUG_BLD for your changes
to take effect.

If you use the command bladmin blddebug to temporarily change this parameter
without changing lsf.licensescheduler, you do not need to restart the daemons.

Valid values

Valid log classes are:
v LC_AUTH and LC2_AUTH: Log authentication messages
v LC_COMM and LC2_COMM: Log communication messages
v LC_FLEX - Log everything related to FLEX_STAT or FLEX_EXEC Flexera APIs
v LC_MEMORY - Log memory use messages
v LC_PREEMPT - Log license preemption policy messages
v LC_RESREQ and LC2_RESREQ: Log resource requirement messages
v LC_TRACE and LC2_TRACE: Log significant program walk steps
v LC_XDR and LC2_XDR: Log everything transferred by XDR

Valid values

Valid log classes are the same as for LS_DEBUG_CMD.

Default

Not defined.

LS_ENABLE_MAX_PREEMPT
Syntax

LS_ENABLE_MAX_PREEMPT=Y

Description

Enables maximum preemption time checking for LSF and taskman jobs.

lsf.licensescheduler

Chapter 6. Reference 101

When LS_ENABLE_MAX_PREEMPT is disabled, preemption times for taskman job are not
checked regardless of the value of parameters LS_MAX_TASKMAN_PREEMPT in
lsf.licensescheduler and MAX_JOB_PREEMPT in lsb.queues, lsb.applications, or
lsb.params.

Used for project mode only.

Default

N

LS_LOG_MASK
Syntax

LS_LOG_MASK=message_log_level

Description

Specifies the logging level of error messages for License Scheduler daemons. If
LS_LOG_MASK is not defined in lsf.licensescheduler, the value of LSF_LOG_MASK in
lsf.conf is used. If neither LS_LOG_MASK nor LSF_LOG_MASK is defined, the default is
LOG_WARNING.

Used for both project mode and cluster mode.

For example:
LS_LOG_MASK=LOG_DEBUG

The log levels in order from highest to lowest are:
v LOG_ERR
v LOG_WARNING
v LOG_INFO
v LOG_DEBUG
v LOG_DEBUG1
v LOG_DEBUG2
v LOG_DEBUG3

The most important License Scheduler log messages are at the LOG_WARNING
level. Messages at the LOG_DEBUG level are only useful for debugging.

Although message log level implements similar functionality to UNIX syslog, there
is no dependency on UNIX syslog. It works even if messages are being logged to
files instead of syslog.

License Scheduler logs error messages in different levels so that you can choose to
log all messages, or only log messages that are deemed critical. The level specified
by LS_LOG_MASK determines which messages are recorded and which are
discarded. All messages logged at the specified level or higher are recorded, while
lower level messages are discarded.

For debugging purposes, the level LOG_DEBUG contains the fewest number of
debugging messages and is used for basic debugging. The level LOG_DEBUG3
records all debugging messages, and can cause log files to grow very large; it is
not often used. Most debugging is done at the level LOG_DEBUG2.

lsf.licensescheduler

102 Using IBM Platform License Scheduler

Default

LOG_WARNING

LS_MAX_STREAM_FILE_NUMBER
Syntax

LS_MAX_STREAM_FILE_NUMBER=integer

Description

Sets the number of saved bld.stream.timestamp log files. When
LS_MAX_STREAM_FILE_NUMBER=2, for example, the two most recent files are kept
along with the current bld.stream file.

Used for both project mode and cluster mode.

Default

0 (old bld.stream file is not saved)

LS_MAX_STREAM_SIZE
Syntax

LS_MAX_STREAM_SIZE=integer

Description

Defines the maximum size of the bld.stream file in MB. once this size is reached an
EVENT_END_OF_STREAM is logged, a new bld.stream file is created, and the old
bld.stream file is renamed bld.stream.timestamp.

Used for both project mode and cluster mode.

Default

1024

LS_MAX_TASKMAN_PREEMPT
Syntax

LS_MAX_TASKMAN_PREEMPT=integer

Description

Defines the maximum number of times taskman jobs can be preempted.

Maximum preemption time checking for all jobs is enabled by
LS_ENABLE_MAX_PREEMPT.

Used for project mode only.

Default

unlimited

lsf.licensescheduler

Chapter 6. Reference 103

LS_MAX_TASKMAN_SESSIONS
Syntax

LS_MAX_TASKMAN_SESSIONS=integer

Description

Defines the maximum number of taskman jobs that run simultaneously. This
prevents system-wide performance issues that occur if there are a large number of
taskman jobs running in License Scheduler.

The number taskman sessions must be a positive integer.

The actual maximum number of taskman jobs is affected by the operating system
file descriptor limit. Make sure the operating system file descriptor limit and the
maximum concurrent connections are large enough to support all taskman tasks,
License Scheduler (bl*) commands, and connections between License Scheduler
and LSF.

Used for both project mode and cluster mode.

LS_STREAM_FILE
Syntax

LS_STREAM_FILE=path

Used for both project mode and cluster mode.

Description

Defines the full path and filename of the bld event log file, bld.stream by default.

Note:

In License Scheduler 8.0 the bld.events log file was replaced by the bld.stream
log file.

Default

LSF_TOP/work/db/bld.stream

LS_PREEMPT_PEER
Syntax

LS_PREEMPT_PEER=Y

Description

Enables bottom-up license token preemption in hierarchical project group
configuration. License Scheduler attempts to preempt tokens from the closest
projects in the hierarchy first. This balances token ownership from the bottom up.

Used for project mode only.

lsf.licensescheduler

104 Using IBM Platform License Scheduler

Default

Not defined. Token preemption in hierarchical project groups is top down.

MBD_HEARTBEAT_INTERVAL
Syntax

MBD_HEARTBEAT_INTERVAL=seconds

Description

Sets the length of time the cluster license allocation remains unchanged after a
cluster has disconnected from bld. After MBD_HEARTBEAT_INTERVAL has passed, the
allocation is set to zero and licenses are redistributed to other clusters.

Used for cluster mode and fast dispatch project mode only.

Default

900 seconds

MBD_REFRESH_INTERVAL
Syntax

MBD_REFRESH_INTERVAL=seconds

Description

MBD_REFRESH_INTERVAL: Cluster mode and project mode. This parameter allows the
administrator to independently control the minimum interval between load
updates from bld, and the minimum interval between load updates from LIM. The
parameter controls the frequency of scheduling interactive (taskman) jobs. The
parameter is read by mbatchd on startup. When MBD_REFRESH_INTERVAL is set
or changed, you must restart bld, and restart mbatchd in each cluster.

Used for both project mode and cluster mode.

Default

15 seconds

MERGE_BY_SERVICE_DOMAIN
Syntax

MERGE_BY_SERVICE_DOMAIN=Y | N

Description

If enabled, correlates job license checkout with the lmstat output across all service
domains first before reserving licenses.

In project mode (but not fast dispatch project mode), this parameter supports the
case where the application's checkout license number is less than or equal to the
job's rusage. If the checked out licenses are greater than the job's rusage, the
ENABLE_DYNAMIC_RUSAGE parameter is still required.

lsf.licensescheduler

Chapter 6. Reference 105

Default

N (Does not correlate job license checkout with the lmstat output across all service
domains before reserving licenses)

PEAK_INUSE_PERIOD
Syntax

PEAK_INUSE_PERIOD=seconds

Description

Defines the interval over which a peak INUSE value is determined for dynamic
license allocation in cluster mode for all license features over all service domains.

Used for cluster mode only.

When defined in both the Parameters section and the Feature section, the Feature
section definition is used for that license feature.

Default

300 seconds

PORT
Syntax

PORT=integer

Description

Defines the TCP listening port used by License Scheduler hosts, including
candidate License Scheduler hosts. Specify any non-privileged port number.

Used for both project mode and cluster mode.

PREEMPT_ACTION
Syntax

PREEMPT_ACTION=action

Description

Specifies the action used for taskman job preemption.

By default, if PREEMPT_ACTION is not configured, bld sends a TSTP signal to
preempt taskman jobs.

You can specify a script using this parameter. For example, PREEMPT_ACTION =
/home/user1/preempt.s issues preempt.s when preempting a taskman job.

Used for project mode only.

Default

Not defined. A TSTP signal is used to preempt taskman jobs.

lsf.licensescheduler

106 Using IBM Platform License Scheduler

PROJECT_GROUP_PATH
Syntax

PROJECT_GROUP_PATH=Y

Description

Enables hierarchical project group paths for fast dispatch project mode, which
enables the following:
v Features can use hierarchical project groups with project and project group

names that are not unique, as long as the projects or project groups do not have
the same parent. That is, you can define projects and project groups in more
than one hierarchical project group.

v When specifying -Lp license_project, you can use paths to describe the project
hierarchy without specifying the root group.
For example, if you have root as your root group, which has a child project
group named groupA with a project named proj1, you can use -Lp
/groupA/proj1 to specify this project.

v Hierarchical project groups have a default project named others with a default
share value of 0. Any projects that do not match the defined projects in a project
group are assigned into the others project.
If there is already a project named others, the preexisting others project
specification overrides the default project.

If LSF_LIC_SCHED_STRICT_PROJECT_NAME (in lsf.conf) and PROJECT_GROUP_PATH are
both defined, PROJECT_GROUP_PATH takes precedence and overrides the
LSF_LIC_SCHED_STRICT_PROJECT_NAME behavior for fast dispatch project mode.

Note: To use PROJECT_GROUP_PATH, you need LSF, Version 9.1.1, or later.

Used for fast dispatch project mode only.

Default

Not defined (N).

REMOTE_LMSTAT_PROTOCOL
Syntax

REMOTE_LMSTAT_PROTOCOL=ssh [ssh_command_options] | rsh [rsh_command_options] |
lsrun [lsrun_command_options]

Description

Specifies the method that License Scheduler uses to connect to the remote agent
host if there are remote license servers that need a remote agent host to collect
license information.

If there are remote license servers that need a remote agent host to collect license
information, License Scheduler uses the specified command (and optional
command options) to connect to the agent host. License Scheduler automatically
appends the name of the remote agent host to the command, so there is no need to
specify the host with the command.

lsf.licensescheduler

Chapter 6. Reference 107

Note: License Scheduler does not validate the specified command, so you must
ensure that you correctly specify the command. The blcollect log file notes that
the command failed, but not any details on the connection error. To determine
specific connection errors, manually specify the command to connect to the remote
server before specifying it in REMOTE_LMSTAT_PROTOCOL.

If using lsrun as the connection method, the remote agent host must be a server
host in the LSF cluster and RES must be started on this host. If using ssh or rsh as
the connection method, the agent host does not have to be a server host in the LSF
cluster.

REMOTE_LMSTAT_PROTOCOL works with REMOTE_LMSTAT_SERVERS, which defines the
remote license servers and remote agent hosts. If you do not define
REMOTE_LMSTAT_SERVERS, REMOTE_LMSTAT_PROTOCOL is not used.

Used for both project mode and cluster mode.

Default

ssh

STANDBY_CONNTIMEOUT
Syntax

STANDBY_CONNTIMEOUT=seconds

Description

Sets the connection timeout the standby bld waits when trying to contact each host
before assuming the host is unavailable.

Used for both project mode and cluster mode.

Default

5 seconds

Clusters section
Description

Required. Lists the clusters that can use License Scheduler.

When configuring clusters for a WAN, the Clusters section of the master cluster
must define its slave clusters.

The Clusters section is the same for both project mode and cluster mode.

Clusters section structure

The Clusters section begins and ends with the lines Begin Clusters and End
Clusters. The second line is the column heading, CLUSTERS. Subsequent lines list
participating clusters, one name per line:

lsf.licensescheduler

108 Using IBM Platform License Scheduler

Begin Clusters
CLUSTERS
cluster1
cluster2
End Clusters

CLUSTERS
Defines the name of each participating LSF cluster. Specify using one name per
line.

ServiceDomain section
Description

Required. Defines License Scheduler service domains as groups of physical license
server hosts that serve a specific network.

The ServiceDomain section is the same for both project mode and cluster mode.

ServiceDomain section structure

Define a section for each License Scheduler service domain.

This example shows the structure of the section:
Begin ServiceDomain
NAME=DesignCenterB
LIC_SERVERS=((1888@hostD)(1888@hostE))
LIC_COLLECTOR=CenterB
End ServiceDomain

Parameters
v LIC_SERVERS
v LIC_COLLECTOR
v LM_STAT_INTERVAL
v LM_STAT_TIMEOUT
v NAME
v REMOTE_LMSTAT_SERVERS

LIC_SERVERS
Syntax

LIC_SERVERS=([(host_name | port_number@host_name |(port_number@host_name
port_number@host_name port_number@host_name))] ...)

Description

Defines the FlexNet license server hosts that make up the License Scheduler service
domain. For each FlexNet license server host, specify the number of the port that
FlexNet uses, then the at symbol (@), then the name of the host. If FlexNet uses the
default port on a host, you can specify the host name without the port number. Put
one set of parentheses around the list, and one more set of parentheses around
each host, unless you have redundant servers (three hosts sharing one license file).
If you have redundant servers, the parentheses enclose all three hosts.

Used for both project mode and cluster mode.

lsf.licensescheduler

Chapter 6. Reference 109

Examples
v One FlexNet license server host:

LIC_SERVERS=((1700@hostA))

v Multiple FlexNet license server hosts with unique license.dat files:
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC))

v Redundant FlexNet license server hosts sharing the same license.dat file:
LIC_SERVERS=((1700@hostD 1700@hostE 1700@hostF))

LIC_COLLECTOR
Syntax

LIC_COLLECTOR=license_collector_name

Description

Optional. Defines a name for the license collector daemon (blcollect) to use in
each service domain. blcollect collects license usage information from FlexNet
and passes it to the License Scheduler daemon (bld). It improves performance by
allowing you to distribute license information queries on multiple hosts.

You can only specify one collector per service domain, but you can specify one
collector to serve multiple service domains. Each time you run blcollect, you
must specify the name of the collector for the service domain. You can use any
name you want.

Used for both project mode and cluster mode.

Default

Undefined. The License Scheduler daemon uses one license collector daemon for
the entire cluster.

LM_STAT_INTERVAL
Syntax

LM_STAT_INTERVAL=seconds

Description

Defines a time interval between calls that License Scheduler makes to collect
license usage information from FlexNet license management.

The value specified for a service domain overrides the global value defined in the
Parameters section. Each service domain definition can specify a different value for
this parameter.

Used for both project mode and cluster mode.

Default

License Scheduler applies the global value defined in the Parameters section.

lsf.licensescheduler

110 Using IBM Platform License Scheduler

LM_STAT_TIMEOUT
Syntax

LM_STAT_TIMEOUT=seconds

Description

Sets the timeout value passed to the lmstat (or lmutil lmstat) command. The
Parameters section setting is overwritten by the ServiceDomain setting, which is
overwritten by the command line setting (blcollect -t timeout).

Used for both project mode and cluster mode.

Default

180 seconds

NAME
Defines the name of the service domain.

Used for both project mode and cluster mode.

REMOTE_LMSTAT_SERVERS
Syntax

REMOTE_LMSTAT_SERVERS=host_name[(host_name ...)] [host_name[(host_name ...)] ...]

Description

Defines the remote license servers and, optionally, the remote agent hosts that
serve these remote license servers.

A remote license server is a license server that does not run on the same domain as
the license collector. A remote agent host serves remote license servers within the
same domain, allowing the license collector to get license information on the
remote license servers with a single remote connection.

Defining remote agent hosts are useful when there are both local and remote
license servers because it is slower for the license collector to connect to multiple
remote license servers to get license information than it is to connect to local
license servers. The license collector connects to the remote agent host (using the
command specified by the REMOTE_LMSTAT_PROTOCOL parameter) and calls lmutil (or
lmstat) to collect license information from the license servers that the agent hosts
serve. This allows the license collector to connect to one remote agent host to get
license information from all the remote license servers on the same domain as the
remote agent host. These license servers should be in the same subnet as the agent
host to improve access.

Remote license servers must also be license servers defined in LIC_SERVERS. Any
remote license servers defined in REMOTE_LMSTAT_SERVERS that are not also defined
in LIC_SERVERS are ignored. Remote agent hosts that serve other license servers do
not need to be defined in LIC_SERVERS. Remote agent hosts that are not defined in
LIC_SERVERS function only as remote agents and not as license servers.

If you specify a remote agent host without additional servers (that is, the remote
agent host does not serve any license servers), the remote agent host is considered

lsf.licensescheduler

Chapter 6. Reference 111

to be a remote license server with itself as the remote agent host. That is, the
license collector connects to the remote agent host and only gets license
information on the remote agent host. Because these hosts are remote license
servers, these remote agent hosts must also be defined as license servers in
LIC_SERVERS, or they will be ignored.

Used for both project mode and cluster mode.

Examples
v One local license server (hostA) and one remote license server (hostB):

LIC_SERVERS=((1700@hostA)(1700@hostB))
REMOTE_LMSTAT_SERVERS=hostB

– The license collector runs lmutil (or lmstat) directly on hostA to get license
information on hostA.

– Because hostB is defined without additional license servers, hostB is a remote
agent host that only serves itself. The license collector connects to hostB (using
the command specified by the REMOTE_LMSTAT_PROTOCOL parameter) and runs
lmstat to get license information on 1700@hostB.

v One local license server (hostA), one remote agent host (hostB) that serves one
remote license server (hostC), and one remote agent host (hostD) that serves two
remote license servers (hostE and hostF):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE)(1700@hostF))
REMOTE_LMSTAT_SERVERS=hostB(hostC) hostD(hostE hostF)

– The license collector runs lmutil (or lmstat) directly to get license
information from 1700@hostA, 1700@hostB, and 1700@hostD.

– The license collector connects to hostB (using the command specified by the
REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostC.
hostB and hostC should be in the same subnet to improve access.

– The license collector connects to hostD (using the command specified by the
REMOTE_LMSTAT_PROTOCOL parameter) and runs lmutil (or lmstat) to get license
information on 1700@hostE and 1700@hostF.
hostD, hostE, and hostF should be in the same subnet to improve access.

v One local license server (hostA), one remote license server (hostB), and one
remote agent host (hostC) that serves two remote license servers (hostD and
hostE):
LIC_SERVERS=((1700@hostA)(1700@hostB)(1700@hostC)(1700@hostD)(1700@hostE))
REMOTE_LMSTAT_SERVERS=hostB hostC(hostD hostE)

– The license collector runs lmutil (or lmstat) directly to get license
information on 1700@hostA and 1700@hostC.

– The license collector connects to hostB (using the command specified by the
REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostB.

– The license collector connects to hostC (using the command specified by the
REMOTE_LMSTAT_PROTOCOL parameter) and runs lmstat to get license
information on 1700@hostD and 1700@hostE.
hostC, hostD, and hostE should be in the same subnet to improve access.

Feature section
Description

Required. Defines license distribution policies.

lsf.licensescheduler

112 Using IBM Platform License Scheduler

Feature section structure

Define a section for each feature managed by License Scheduler.
Begin Feature
NAME=vcs
FLEX_NAME=vcs
...
Distribution policy
Parameters
...
End Feature

Parameters
v ACCINUSE_INCLUDES_OWNERSHIP
v ALLOC_BUFFER
v ALLOCATION
v CLUSTER_DISTRIBUTION
v CLUSTER_MODE
v DEMAND_LIMIT
v DISTRIBUTION
v DYNAMIC
v ENABLE_DYNAMIC_RUSAGE
v ENABLE_MINJOB_PREEMPTION
v CHECKOUT_FROM_FIRST_HOST_ONLY
v FAST_DISPATCH
v FLEX_NAME
v GROUP
v GROUP_DISTRIBUTION
v INUSE_FROM_RUSAGE
v LM_REMOVE_INTERVAL
v LMREMOVE_SUSP_JOBS
v LOCAL_TO
v LS_ACTIVE_PERCENTAGE
v LS_FEATURE_PERCENTAGE
v LS_WAIT_TO_PREEMPT
v NAME
v NON_SHARED_DISTRIBUTION
v PEAK_INUSE_PERIOD
v PREEMPT_ORDER
v PREEMPT_RESERVE
v RETENTION_FACTOR
v SERVICE_DOMAINS
v WORKLOAD_DISTRIBUTION

ACCINUSE_INCLUDES_OWNERSHIP
Syntax

ACCINUSE_INCLUDES_OWNERSHIP=Y

lsf.licensescheduler

Chapter 6. Reference 113

Description

When not defined, accumulated use is incremented each scheduling cycle by
(tokens in use) + (tokens reserved) if this exceeds the number of tokens owned.

When defined, accumulated use is incremented each scheduling cycle by (tokens in
use) + (tokens reserved) regardless of the number of tokens owned.

This is useful for projects that have a very high ownership set when considered
against the total number of tokens available for LSF workload. Projects can be
starved for tokens when the ownership is set too high and this parameter is not
set.

Accumulated use is displayed by the blstat command under the heading
ACUM_USE.

Used for project mode only. Cluster mode and fast dispatch project mode do not
track accumulated use.

Default

N, not enabled.

ALLOC_BUFFER
Syntax

ALLOC_BUFFER = buffer | cluster_name buffer ... default buffer

Description

Enables dynamic distribution of licenses across clusters in cluster mode.

Cluster names must be the names of clusters defined in the Clusters section of
lsf.licensescheduler.

Used for cluster mode only.

ALLOC_BUFFER=buffer sets one buffer size for all clusters, while
ALLOC_BUFFER=cluster_name buffer ... sets a different buffer size for each cluster.

The buffer size is used during dynamic redistribution of licenses. Increases in
allocation are determined by the PEAK value, and increased by DEMAND for
license tokens to a maximum increase of BUFFER, the buffer size configured by
ALLOC_BUFFER. The license allocation can increase in steps as large as the buffer
size, but no larger.

Allocation buffers help determine the maximum rate at which tokens can be
transferred to a cluster as demand increases in the cluster. The maximum rate of
transfer to a cluster is given by the allocation buffer divided by
MBD_REFRESH_INTERVAL. Be careful not to set the allocation buffer too large so that
licenses are not wasted because they are be allocated to a cluster that cannot use
them.

Decreases in license allocation can be larger than the buffer size, but the allocation
must remain at PEAK+BUFFER licenses. The license allocation includes up to the
buffer size of extra licenses, in case demand increases.

lsf.licensescheduler

114 Using IBM Platform License Scheduler

Increasing the buffer size allows the license allocation to grow faster, but also
increases the number of licenses that may go unused at any given time. The buffer
value must be tuned for each license feature and cluster to balance these two
objectives.

Detailed license distribution information is shown in the blstat output.

Use the keyword default to apply a buffer size to all remaining clusters. For
example:
Begin Feature
NAME = f1
CLUSTER_DISTRIBUTION = WanServers(banff 1 berlin 1 boston 1)
ALLOC_BUFFER = banff 10 default 5
End Feature

In this example, dynamic distribution is enabled. The cluster banff has a buffer size
of 10, and all remaining clusters have a buffer size of 5.

To allow a cluster to be able to use licenses only when another cluster does not
need them, you can set the cluster distribution for the cluster to 0, and specify an
allocation buffer for the number of tokens that the cluster can request.

For example:
Begin Feature
CLUSTER_DISTRIBUTION=Wan(CL1 0 CL2 1)
ALLOC_BUFFER=5
End Feature

When no jobs are running, the token allocation for CL1 is 5. CL1 can get more than
5 tokens if CL2 does not require them.

Default

Not defined. Static distribution of licenses is used in cluster mode.

ALLOCATION
Syntax

ALLOCATION=project_name (cluster_name [number_shares] ...) ...

cluster_name

Specify LSF cluster names or interactive tasks that licenses are to be allocated
to.

project_name

Specify a License Scheduler project (described in the Projects section or as
default) that is allowed to use the licenses.

number_shares

Specify a positive integer representing the number of shares assigned to the
cluster.

The number of shares assigned to a cluster is only meaningful when you compare
it to the number assigned to other clusters. The total number of shares is the sum
of the shares assigned to each cluster.

lsf.licensescheduler

Chapter 6. Reference 115

Description

Defines the allocation of license features across clusters and interactive tasks.

Used for project mode and fast dispatch project mode only.

ALLOCATION ignores the global setting of the ENABLE_INTERACTIVE
parameter because ALLOCATION is configured for the license feature.

You can configure the allocation of license shares to:
v Change the share number between clusters for a feature
v Limit the scope of license usage and change the share number between LSF jobs

and interactive tasks for a feature

Tip: To manage interactive tasks in License Scheduler projects, use the LSF Task
Manager, taskman. The Task Manager utility is supported by License Scheduler.

Default

If ENABLE_INTERACTIVE is not set, each cluster receives equal share, and
interactive tasks receive no shares.

Examples:
Each example contains two clusters and 12 licenses of a specific feature.

Example 1

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is not
set.
Begin Parameters
...
ENABLE_INTERACTIVE=n
...
End Parameters

Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1 (Lp1 1)
End Feature

Six licenses are allocated to each cluster. No licenses are allocated to interactive
tasks.

Example 2

ALLOCATION is not configured. The ENABLE_INTERACTIVE parameter is set.
Begin Parameters
...
ENABLE_INTERACTIVE=y
...
End Parameters

Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1 (Lp1 1)
End Feature

Four licenses are allocated to each cluster. Four licenses are allocated to interactive
tasks.

lsf.licensescheduler

116 Using IBM Platform License Scheduler

Example 3

In the following example, the ENABLE_INTERACTIVE parameter does not affect
the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is set.
Begin Parameters
...
ENABLE_INTERACTIVE=y
...
End Parameters

Begin Feature
NAME=ApplicationY
DISTRIBUTION=LicenseServer1 (Lp2 1)
ALLOCATION=Lp2(cluster1 1 cluster2 0 interactive 1)
End Feature

The ENABLE_INTERACTIVE setting is ignored. Licenses are shared equally
between cluster1 and interactive tasks. Six licenses of ApplicationY are allocated
to cluster1. Six licenses are allocated to interactive tasks.

Example 4

In the following example, the ENABLE_INTERACTIVE parameter does not affect
the ALLOCATION configuration of the feature.

ALLOCATION is configured. The ENABLE_INTERACTIVE parameter is not set.
Begin Parameters
...
ENABLE_INTERACTIVE=n
...
End Parameters

Begin Feature
NAME=ApplicationZ
DISTRIBUTION=LicenseServer1 (Lp1 1)
ALLOCATION=Lp1(cluster1 0 cluster2 1 interactive 2)
End Feature

The ENABLE_INTERACTIVE setting is ignored. Four licenses of ApplicationZ are
allocated to cluster2. Eight licenses are allocated to interactive tasks.

CHECKOUT_FROM_FIRST_HOST_ONLY
Syntax

CHECKOUT_FROM_FIRST_HOST_ONLY=Y

Description

If enabled, License Scheduler only considers user@host information for the first
execution host of a parallel job when merging the license usage data. Setting in
individual Feature sections overrides the global setting in the Parameters section.

If a feature has multiple Feature sections (using LOCAL_TO), each section must have
the same setting for CHECKOUT_FROM_FIRST_HOST_ONLY.

If disabled, License Scheduler attempts to check out user@host keys in the parallel
job constructed using the user name and all execution host names, and merges the
corresponding checkout information on the service domain if found. If

lsf.licensescheduler

Chapter 6. Reference 117

MERGE_BY_SERVICE_DOMAIN=Y is defined, License Scheduler also merges multiple
user@host data for parallel jobs across different service domains.

Default

Undefined (N).License Scheduler attempts to check out user@host keys in the
parallel job constructed using the user name and all execution host names, and
merges the corresponding checkout information on the service domain if found.

CLUSTER_DISTRIBUTION
Syntax

CLUSTER_DISTRIBUTION=service_domain(cluster shares/min/max ...)...

service_domain

Specify a License Scheduler WAN service domain (described in the
ServiceDomain section) that distributes licenses to multiple clusters, and the
share for each cluster.

Specify a License Scheduler LAN service domain for a single cluster.

cluster

Specify each LSF cluster that accesses licenses from this service domain.

shares

For each cluster specified for a WAN service domain, specify a positive integer
representing the number of shares assigned to the cluster. (Not required for a
LAN service domain.)

The number of shares assigned to a cluster is only meaningful when you
compare it to the number assigned to other clusters, or to the total number
assigned by the service domain. The total number of shares is the sum of the
shares assigned to each cluster.

min

Optionally, specify a positive integer representing the minimum number of
license tokens allocated to the cluster when dynamic allocation is enabled for a
WAN service domain (when ALLOC_BUFFER is defined for the feature).

The minimum allocation is allocated exclusively to the cluster, and is similar to
the non-shared allocation in project mode.

Cluster shares take precedence over minimum allocations configured. If the
minimum allocation exceeds the cluster's share of the total tokens, a cluster's
allocation as given by bld may be less than the configured minimum
allocation.

max

Optionally, specify a positive integer representing the maximum number of
license tokens allocated to the cluster when dynamic allocation is enabled for a
WAN service domain (when ALLOC_BUFFER is definedfor the feature).

Description

CLUSTER_DISTRIBUTION must be defined when using cluster mode.

lsf.licensescheduler

118 Using IBM Platform License Scheduler

Defines the cross-cluster distribution policies for the license. The name of each
service domain is followed by its distribution policy, in parentheses. The
distribution policy determines how the licenses available in each service domain
are distributed among the clients.

The distribution policy is a space-separated list with each cluster name followed by
its share assignment. The share assignment determines what fraction of available
licenses is assigned to each cluster, in the event of competition between clusters.

Examples
CLUSTER_DISTRIBUTION=wanserver(Cl1 1 Cl2 1 Cl3 1 Cl4 1)

CLUSTER_DISTRIBUTION = SD(C1 1 C2 1) SD1(C3 1 C4 1) SD2(C1 1) SD3(C2 1)

In these examples, wanserver, SD, and SD1 are WAN service domains, while SD2
and SD3 are LAN service domains serving a single cluster.

CLUSTER_MODE
Syntax

CLUSTER_MODE=Y

Description

Enables cluster mode (instead of project mode) for the license feature. Setting in
the Feature section overrides the global setting in the Parameters section.

Cluster mode emphasizes high utilization of license tokens above other
considerations such as ownership. License ownership and sharing can still be
configured, but within each cluster instead of across multiple clusters. Preemption
of jobs (and licenses) also occurs within each cluster instead of across clusters.

Cluster mode was introduced in License Scheduler 8.0. Before cluster mode was
introduced, project mode was the only choice available.

Default

Undefined (N). License Scheduler runs in project mode.

DEMAND_LIMIT
Syntax

DEMAND_LIMIT=integer

Description

Sets a limit to which License Scheduler considers the demand by each project in
each cluster when allocating licenses. Setting in the Feature section overrides the
global setting in the Parameters section.

Used for fast dispatch project mode only.

When enabled, the demand limit helps prevent License Scheduler from allocating
more licenses to a project than can actually be used, which reduces license waste
by limiting the demand that License Scheduler considers. This is useful in cases

lsf.licensescheduler

Chapter 6. Reference 119

when other resource limits are reached, License Scheduler allocates more tokens
than Platform LSF can actually use because jobs are still pending due to lack of
other resources.

When disabled (that is, DEMAND_LIMIT=0 is set), License Scheduler takes into
account all the demand reported by each cluster when scheduling.

DEMAND_LIMIT does not affect the DEMAND that blstat displays. Instead, blstat
displays the entire demand sent for a project from all clusters. For example, one
cluster reports a demand of 15 for a project. Another cluster reports a demand of
20 for the same project. When License Scheduler allocates licenses, it takes into
account a demand of five from each cluster for the project and the DEMAND that
blstat displays is 35.

Periodically, each cluster sends a demand for each project. This is calculated in a
cluster for a project by summing up the rusage of all jobs of the project pending
due to lack of licenses. Whether to count a job's rusage in the demand depends on
the job's pending reason. In general, the demand reported by a cluster only
represents a potential demand from the project. It does not take into account other
resources that are required to start a job. For example, a demand for 100 licenses is
reported for a project. However, if License Scheduler allocates 100 licenses to the
project, the project does not necessarily use all 100 licenses due to slot available,
limits, or other scheduling constraints.

In project mode and fast dispatch project mode, mbatchd in each cluster sends a
demand for licenses from each project. In project mode, License Scheduler assumes
that each project can actually use the demand that is sent to it. In fast dispatch
project mode, DEMAND_LIMIT limits the amount of demand from each project in each
cluster that is considered when scheduling.

Default

5

DISTRIBUTION
Syntax

DISTRIBUTION=[service_domain_name([project_name number_shares[/
number_licenses_owned]] ... [default])] ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain
section) that distributes the licenses.

project_name

Specify a License Scheduler project (described in the Projects section) that is
allowed to use the licenses.

number_shares

Specify a positive integer representing the number of shares assigned to the
project.

The number of shares assigned to a project is only meaningful when you
compare it to the number assigned to other projects, or to the total number
assigned by the service domain. The total number of shares is the sum of the
shares assigned to each project.

lsf.licensescheduler

120 Using IBM Platform License Scheduler

number_licenses_owned

Optional. Specify a slash (/) and a positive integer representing the number of
licenses that the project owns. When configured, preemption is enabled and
owned licenses are reclaimed using preemption when there is unmet demand.

default

A reserved keyword that represents the default project if the job submission
does not specify a project (bsub -Lp), or the specified project is not configured
in the Projects section of lsf.licensescheduler. Jobs that belong to projects do
not get a share of the tokens when the project is not explicitly defined in
DISTRIBUTION.

Description

Used for project mode and fast dispatch project mode only.

One of DISTRIBUTION or GROUP_DISTRIBUTION must be defined when using project
mode. GROUP_DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in
the same feature, the License Scheduler daemon returns an error and ignores this
feature.

Defines the distribution policies for the license. The name of each service domain is
followed by its distribution policy, in parentheses. The distribution policy
determines how the licenses available in each service domain are distributed
among the clients.

When in fast dispatch project mode, you can only specify one service domain.

The distribution policy is a space-separated list with each project name followed
by its share assignment. The share assignment determines what fraction of
available licenses is assigned to each project, in the event of competition between
projects. Optionally, the share assignment is followed by a slash and the number of
licenses owned by that project. License ownership enables a preemption policy (In
the event of competition between projects, projects that own licenses preempt jobs.
Licenses are returned to the owner immediately).

Examples
DISTRIBUTION=wanserver (Lp1 1 Lp2 1 Lp3 1 Lp4 1)

In this example, the service domain named wanserver shares licenses equally
among four projects. If all projects are competing for a total of eight licenses, each
project is entitled to two licenses at all times. If all projects are competing for only
two licenses in total, each project is entitled to a license half the time.
DISTRIBUTION=lanserver1 (Lp1 1 Lp2 2/6)

In this example, the service domain named lanserver1 allows Lp1 to use one third
of the available licenses and Lp2 can use two thirds of the licenses. However, Lp2 is
always entitled to six licenses, and can preempt another project to get the licenses
immediately if they are needed. If the projects are competing for a total of 12
licenses, Lp2 is entitled to eight licenses (six on demand, and two more as soon as
they are free). If the projects are competing for only six licenses in total, Lp2 is
entitled to all of them, and Lp1 can only use licenses when Lp2 does not need
them.

lsf.licensescheduler

Chapter 6. Reference 121

DYNAMIC
Syntax

DYNAMIC=Y

Description

If you specify DYNAMIC=Y, you must specify a duration in an rusage resource
requirement for the feature. This enables License Scheduler to treat the license as a
dynamic resource and prevents License Scheduler from scheduling tokens for the
feature when they are not available, or reserving license tokens when they should
actually be free.

Used for project mode only. Cluster mode and fast dispatch project mode do not
support rusage duration.

ENABLE_DYNAMIC_RUSAGE
Syntax

ENABLE_DYNAMIC_RUSAGE=Y

Description

Enforces license distribution policies for class-C license features.

When set, ENABLE_DYNAMIC_RUSAGE enables all class-C license checkouts to
be considered managed checkout, instead of unmanaged (or OTHERS).

Used for project mode only. Cluster mode and fast dispatch project mode do not
support this parameter.

ENABLE_MINJOB_PREEMPTION
Syntax

ENABLE_MINJOB_PREEMPTION=Y

Description

Minimizes the overall number of preempted jobs by enabling job list optimization.
For example, for a job that requires 10 licenses, License Scheduler preempts one job
that uses 10 or more licenses rather than 10 jobs that each use one license.

Used for project mode only

Default

Undefined: License Scheduler does not optimize the job list when selecting jobs to
preempt.

FAST_DISPATCH
Syntax

FAST_DISPATCH=Y

lsf.licensescheduler

122 Using IBM Platform License Scheduler

Description

Enables fast dispatch project mode for the license feature, which increases license
utilization for project licenses. Setting in the Feature section overrides the global
setting in the Parameters section.

Used for project mode only.

When enabled, License Scheduler does not have to run the FlexNet command
lmstat to verify that a license is free before each job dispatch. As soon as a job
finishes, the cluster can reuse its licenses for another job of the same project, which
keeps gaps between jobs small. However, because License Scheduler does not run
lmstat to verify that the license is free, there is an increased chance of a license
checkout failure for jobs if the license is already in use by a job in another project.

The fast dispatch project mode supports the following parameters in the Feature
section:
v ALLOCATION
v DEMAND_LIMIT
v DISTRIBUTION
v FLEX_NAME
v GROUP_DISTRIBUTION
v LS_FEATURE_PERCENTAGE
v NAME
v NON_SHARED_DISTRIBUTION
v SERVICE_DOMAINS
v WORKLOAD_DISTRIBUTION

The fast dispatch project mode also supports the MBD_HEARTBEAT_INTERVAL
parameter in the Parameters section.

Other parameters are not supported, including those that project mode supports,
such as the following parameters:
v ACCINUSE_INCLUDES_OWNERSHIP
v DYNAMIC
v GROUP
v LOCAL_TO
v LS_ACTIVE_PERCENTAGE

Default

Undefined (N). License Scheduler runs in project mode without fast dispatch.

FLEX_NAME
Syntax

FLEX_NAME=feature_name1 [feature_name2 ...]

lsf.licensescheduler

Chapter 6. Reference 123

Description

Optional. Defines the feature name—the name used by FlexNet to identify the type
of license. You only need to specify this parameter if the License Scheduler token
name is not identical to the FlexNet feature name.

FLEX_NAME allows the NAME parameter to be an alias of the FlexNet feature name.
For feature names that start with a number or contain a dash (-), you must set both
NAME and FLEX_NAME, where FLEX_NAME is the actual FlexNet Licensing feature name,
and NAME is an arbitrary license token name you choose.

Specify a space-delimited list of feature names in FLEX_NAME to combine multiple
FlexNet features into one feature name specified under the NAME parameter. This
allows you to use the same feature name for multiple FlexNet features (that are
interchangeable for applications). LSF recognizes the alias of the combined feature
(specified in NAME) as a feature name instead of the individual FlexNet feature
names specified in FLEX_NAME. When submitting a job to LSF, users specify the
combined feature name in the bsub rusage string, which allows the job to use any
token from any of the features specified in FLEX_NAME.

Example

To specify AppZ201 as an alias for the FlexNet feature named 201-AppZ:
Begin Feature
FLEX_NAME=201-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)
End Feature

To combine two FlexNet features (201-AppZ and 202-AppZ) into a feature named
AppZ201:
Begin Feature
FLEX_NAME=201-AppZ 202-AppZ
NAME=AppZ201
DISTRIBUTION=LanServer1(Lp1 1 Lp2 1)
End Feature

AppZ201 is a combined feature that uses both 201-AppZ and 202-AppZ tokens.
Submitting a job with AppZ201 in the rusage string (for example, bsub -Lp Lp1 -R
"rusage[AppZ201=2]" myjob) means that the job checks out tokens for either
201-AppZ or 202-AppZ.

GROUP
Syntax

GROUP=[group_name(project_name...)] ...

group_name

Specify a name for a group of projects. This is different from a ProjectGroup
section; groups of projects are not hierarchical.

project_name

Specify a License Scheduler project (described in the Projects section) that is
allowed to use the licenses. The project must appear in the DISTRIBUTION
and only belong to one group.

lsf.licensescheduler

124 Using IBM Platform License Scheduler

Description

Optional. Defines groups of projects and specifies the name of each group. The
groups defined here are used for group preemption. The number of licenses owned
by the group is the total number of licenses owned by member projects.

Used for project mode only. Cluster mode and fast dispatch project mode do not
support this parameter.

This parameter is ignored if GROUP_DISTRIBUTION is also defined.

Example

For example, without the GROUP configuration shown, proj1 owns 4 license
tokens and can reclaim them using preemption. After adding the GROUP
configuration, proj1 and proj2 together own 8 license tokens. If proj2 is idle, proj1
is able to reclaim all 8 license tokens using preemption.
Begin Feature
NAME = AppY
DISTRIBUTION = LanServer1(proj1 1/4 proj2 1/4 proj3 2)
GROUP = GroupA(proj1 proj2)
End Feature

GROUP_DISTRIBUTION
Syntax

GROUP_DISTRIBUTION=top_level_hierarchy_name

top_level_hierarchy_name

Specify the name of the top level hierarchical group.

Description

Defines the name of the hierarchical group containing the distribution policy
attached to this feature, where the hierarchical distribution policy is defined in a
ProjectGroup section.

One of DISTRIBUTION or GROUP_DISTRIBUTION must be defined when using project
mode. GROUP_DISTRIBUTION and DISTRIBUTION are mutually exclusive. If defined in
the same feature, the License Scheduler daemon returns an error and ignores this
feature.

If GROUP is also defined, it is ignored in favor of GROUP_DISTRIBUTION.

Example

The following example shows the GROUP_DISTRIBUTION parameter hierarchical
scheduling for the top-level hierarchical group named groups. The SERVICE_DOMAINS
parameter defines a list of service domains that provide tokens for the group.
Begin Feature
NAME = myjob2
GROUP_DISTRIBUTION = groups
SERVICE_DOMAINS = LanServer wanServer
End Feature

lsf.licensescheduler

Chapter 6. Reference 125

INUSE_FROM_RUSAGE
Syntax

INUSE_FROM_RUSAGE=Y|N

Description

When not defined or set to N, the INUSE value uses rusage from bsub job
submissions merged with license checkout data reported by blcollect (as reported
by blstat).

When INUSE_FROM_RUSAGE=Y, the INUSE value uses the rusage from bsub job
submissions instead of waiting for the blcollect update. This can result in faster
reallocation of tokens when using dynamic allocation (when ALLOC_BUFFER is set).

When for individual license features, the Feature section setting overrides the
global Parameters section setting.

Used for cluster mode only.

Default

N

LM_REMOVE_INTERVAL
Syntax

LM_REMOVE_INTERVAL=seconds

Description

Specifies the minimum time a job must have a license checked out before lmremove
can remove the license. lmremove causes lmgrd and vendor daemons to close the
TCP connection with the application. They then retry the license checkout.

When using lmremove as part of the preemption action (LMREMOVE_SUSP_JOBS),
define LM_REMOVE_INTERVAL=0 to ensure that License Scheduler can preempt a job
immediately after checkout. After suspending the job, License Scheduler then uses
lmremove to release licenses from the job.

Used for both project mode and cluster mode.

The value specified for a feature overrides the global value defined in the
Parameters section. Each feature definition can specify a different value for this
parameter.

Default

Undefined: License Scheduler applies the global value.

LMREMOVE_SUSP_JOBS
Syntax

LMREMOVE_SUSP_JOBS=seconds

lsf.licensescheduler

126 Using IBM Platform License Scheduler

Description

Enables License Scheduler to use lmremove to remove license features from each
recently-suspended job. After enabling this parameter, the preemption action is to
suspend the job's processes and use lmremove to remove licences from the
application. lmremove causes lmgrd and vendor daemons to close the TCP
connection with the application.

License Scheduler continues to try removing the license feature for the specified
number of seconds after the job is first suspended. When setting this parameter for
an application, specify a value greater than the period following a license checkout
that lmremove will fail for the application. This ensures that when a job suspends,
its licenses are released. This period depends on the application.

When using lmremove as part of the preemption action, define
LM_REMOVE_INTERVAL=0 to ensure that License Scheduler can preempt a job
immediately after checkout. After suspending the job, License Scheduler then uses
lmremove to release licenses from the job.

Used for fast dispatch project mode only.

The value specified for a feature overrides the global value defined in the
Parameters section. Each feature definition can specify a different value for this
parameter.

Default

Undefined. The default preemption action is to send a TSTP signal to the job.

LOCAL_TO
Syntax

LOCAL_TO=cluster_name | location_name(cluster_name [cluster_name ...])

Description

Used for project mode only. Cluster mode and fast dispatch project mode do not
support this parameter.

Configures token locality for the license feature. You must configure different
feature sections for same feature based on their locality. By default, if LOCAL_TO is
not defined, the feature is available to all clients and is not restricted by
geographical location. When LOCAL_TO is configured, for a feature, License
Scheduler treats license features served to different locations as different token
names, and distributes the tokens to projects according the distribution and
allocation policies for the feature.

LOCAL_TO allows you to limit features from different service domains to specific
clusters, so License Scheduler only grants tokens of a feature to jobs from clusters
that are entitled to them.

For example, if your license servers restrict the serving of license tokens to specific
geographical locations, use LOCAL_TO to specify the locality of a license token if any
feature cannot be shared across all the locations. This avoids having to define
different distribution and allocation policies for different service domains, and
allows hierarchical group configurations.

lsf.licensescheduler

Chapter 6. Reference 127

License Scheduler manages features with different localities as different resources.
Use blinfo and blstat to see the different resource information for the features
depending on their cluster locality.

License features with different localities must be defined in different feature
sections. The same Service Domain can appear only once in the configuration for a
given license feature.

A configuration like LOCAL_TO=Site1(clusterA clusterB) configures the feature for
more than one cluster when using project mode.

A configuration like LOCAL_TO=clusterA configures locality for only one cluster.
This is the same as LOCAL_TO=clusterA(clusterA).

Cluster names must be the names of clusters defined in the Clusters section of
lsf.licensescheduler.

Examples
Begin Feature
NAME = hspice
DISTRIBUTION = SD1 (Lp1 1 Lp2 1)
LOCAL_TO = siteUS(clusterA clusterB)
End Feature

Begin Feature
NAME = hspice
DISTRIBUTION = SD2 (Lp1 1 Lp2 1)
LOCAL_TO = clusterA
End Feature

Begin Feature
NAME = hspice
DISTRIBUTION = SD3 (Lp1 1 Lp2 1) SD4 (Lp1 1 Lp2 1)
End Feature

Or use the hierarchical group configuration (GROUP_DISTRIBUTION):
Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD1
LOCAL_TO = clusterA
End Feature

Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD2
LOCAL_TO = clusterB
End Feature

Begin Feature
NAME = hspice
GROUP_DISTRIBUTION = group1
SERVICE_DOMAINS = SD3 SD4
End Feature

Default

Not defined. The feature is available to all clusters and taskman jobs, and is not
restricted by cluster.

lsf.licensescheduler

128 Using IBM Platform License Scheduler

LS_ACTIVE_PERCENTAGE
Syntax

LS_ACTIVE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers and
adjusts ownership for inactive projects. Sets LS_FEATURE_PERCENTAGE=Y
automatically.

Settings LS_ACTIVE_PERCENTAGE=Y dynamically adjusts ownership based on project
activity, setting ownership to zero for inactive projects and restoring the configured
ownership setting when projects become active. If the total ownership for the
license feature is greater than 100%, each ownership value is scaled appropriately
for a total ownership of 100%.

Used for project mode only. Cluster mode and fast dispatch project mode do not
support this parameter.

Default

N (Ownership values are not changed based on project activity.)

LS_FEATURE_PERCENTAGE
Syntax

LS_FEATURE_PERCENTAGE=Y | N

Description

Configures license ownership in percentages instead of absolute numbers. When
not combined with hierarchical projects, affects the owned values in
DISTRIBUTION and the NON_SHARED_DISTRIBUTION values only.

When using hierarchical projects, percentage is applied to OWNERSHIP, LIMITS,
and NON_SHARED values.

Used for project mode and fast dispatch project mode only.

For example:
Begin Feature
LS_FEATURE_PERCENTAGE = Y
DISTRIBUTION = LanServer (p1 1 p2 1 p3 1/20)
...
End Feature

The service domain LanServer shares licenses equally among three License
Scheduler projects. P3 is always entitled to 20% of the total licenses, and can
preempt another project to get the licenses immediately if they are needed.

Example 1
Begin Feature
LS_FEATURE_PERCENTAGE = Y
DISTRIBUTION = LanServer (p1 1 p2 1 p3 1/20)
...
End Feature

lsf.licensescheduler

Chapter 6. Reference 129

The service domain LanServer shares licenses equally among three License
Scheduler projects. P3 is always entitled to 20% of the total licenses, and can
preempt another project to get the licenses immediately if they are needed.

Example 2

With LS_FEATURE_PERCENTAGE=Y in feature section and using hierarchical project
groups:
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(R (A p4)) (1 1) () () ()
(A (B p3)) (1 1) (- 10) (- 20) ()
(B (p1 p2)) (1 1) (30 -) () (- 5)
End ProjectGroup

Project p1 owns 30% of the total licenses, and project p3 owns 10% of total
licenses. P3's LIMITS is 20% of total licenses, and p2's NON_SHARED is 5%.

Default

N (Ownership is not configured with percentages, but with absolute numbers.)

LS_WAIT_TO_PREEMPT
Syntax

LS_WAIT_TO_PREEMPT=seconds

Description

Defines the number of seconds that jobs must wait (time since it was dispatched)
before it can be preempted. Applies to LSF and taskman jobs.

Used for project mode only.

When LM_REMOVE_INTERVAL is also defined, the LM_REMOVE_INTERVAL value overrides
the LS_WAIT_TO_PREEMPT value.

Default

0. The job can be preempted even if it was just dispatched.

NAME
Required. Defines the token name—the name used by License Scheduler and LSF
to identify the license feature.

Normally, license token names should be the same as the FlexNet Licensing feature
names, as they represent the same license. However, LSF does not support names
that start with a number, or names containing a dash or hyphen character (-),
which may be used in the FlexNet Licensing feature name.

NON_SHARED_DISTRIBUTION
Syntax

NON_SHARED_DISTRIBUTION=service_domain_name ([project_name
number_non_shared_licenses] ...) ...

service_domain_name

lsf.licensescheduler

130 Using IBM Platform License Scheduler

Specify a License Scheduler service domain (described in the ServiceDomain
section) that distributes the licenses.

project_name

Specify a License Scheduler project (described in the section) that is allowed to
use the licenses.

number_non_shared_licenses

Specify a positive integer representing the number of non-shared licenses that
the project owns.

Description

Optional. Defines non-shared licenses. Non-shared licenses are privately owned,
and are not shared with other license projects. They are available only to one
project.

Used for project mode and fast dispatch project mode only.

Use blinfo -a to display NON_SHARED_DISTRIBUTION information.

For projects defined with NON_SHARED_DISTRIBUTION, you must assign the project
OWNERSHIP an equal or greater number of tokens than the number of non-shared
licenses. If the number of owned licenses is less than the number of non-shared
licenses, OWNERSHIP is set to the number of non-shared licenses.

Examples
v If the number of tokens normally given to a project (to satisfy the DISTRIBUTION

share ratio) is larger than its NON_SHARED_DISTRIBUTION value, the DISTRIBUTION
share ratio takes effect first.
Begin Feature
NAME=f1 # total 15 on LanServer
FLEX_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 4/10 Lp2 1)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
End Feature

In this example, 10 non-shared licenses are defined for the Lp1 project on
LanServer. The DISTRIBUTION share ratio for Lp1:Lp2 is 4:1. If there are 15
licenses, Lp1 will normally get 12 licenses, which is larger than its
NON_SHARED_DISTRIBUTION value of 10. Therefore, the DISTRIBUTION share ratio
takes effect, so Lp1 gets 12 licenses and Lp2 gets 3 licenses for the 4:1 share
ratio.

v If the number of tokens normally given to a project (to satisfy the DISTRIBUTION
share ratio) is smaller than its NON_SHARED_DISTRIBUTION value, the project will
first get the number of tokens equal to NON_SHARED_DISTRIBUTION, then the
DISTRIBUTION share ratio for the other projects takes effect for the remaining
licenses.
– For one project with non-shared licenses and one project with no non-shared

licenses: , the project with no non-shared licenses is given all the remaining
licenses since it would normally be given more according to the DISTRIBUTION
share ratio:

lsf.licensescheduler

Chapter 6. Reference 131

Begin Feature
NAME=f1 # total 15 on LanServer
FLEX_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
End Feature

In this example, 10 non-shared licenses are defined for the Lp1 project on
LanServer. The DISTRIBUTION share ratio for Lp1:Lp2 is 1:4. If there are 15
licenses, Lp1 will normally get three licenses, which is smaller than its
NON_SHARED_DISTRIBUTION value of 10. Therefore, Lp1 gets the first 10 licenses,
and Lp2 gets the remaining five licenses (since it would normally get more
according to the share ratio).

– For one project with non-shared licenses and two or more projects with no
non-shared licenses, the two projects with no non-shared licenses are assigned
the remaining licenses according to the DISTRIBUTION share ratio with each
other, ignoring the share ratio for the project with non-shared licenses.
Begin Feature
NAME=f1 # total 15 on LanServer
FLEX_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4 Lp3 2)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10)
End Feature

In this example, 10 non-shared licenses are defined for the Lp1 project on
LanServer. The DISTRIBUTION share ratio for Lp1:Lp2:Lp3 is 1:4:2. If there are
15 licenses, Lp1 will normally get two licenses, which is smaller than its
NON_SHARED_DISTRIBUTION value of 10. Therefore, Lp1 gets the first 10 licenses.
The remaining licenses are given to Lp2 and Lp3 to a ratio of 4:2, so Lp2 gets
three licenses and Lp3 gets two licenses.

– For two projects with non-shared licenses and one with no non-shared
licenses, the one project with no non-shared licenses is given the remaining
licenses after the two projects are given their non-shared licenses:
Begin Feature
NAME=f1 # total 15 on LanServer
FLEX_NAME=VCS-RUNTIME
DISTRIBUTION=LanServer(Lp1 1/10 Lp2 4 Lp3 2/5)
NON_SHARED_DISTRIBUTION=LanServer(Lp1 10 Lp3 5)
End Feature

In this example, 10 non-shared licenses are defined for the Lp1 project and
five non-shared license are defined for the Lp3 project on LanServer. The
DISTRIBUTION share ratio for Lp1:Lp2:Lp3 is 1:4:2. If there are 15 licenses, Lp1
will normally get two licenses and Lp3 will normally get four licenses, which
are both smaller than their corresponding NON_SHARED_DISTRIBUTION values.
Therefore, Lp1 gets 10 licenses and Lp3 gets five licenses. Lp2 gets no licenses
even though it normally has the largest share because Lp1 and Lp3 have
non-shared licenses.

PEAK_INUSE_PERIOD
Syntax

PEAK_INUSE_PERIOD=seconds | cluster seconds ...

Description

Defines the interval over which a peak INUSE value is determined for dynamic
license allocation in cluster mode for this license features and service domain.

lsf.licensescheduler

132 Using IBM Platform License Scheduler

Use keyword default to set for all clusters not specified, and the keyword
interactive (in place of cluster name) to set for taskman jobs. For example:
PEAK_INUSE_PERIOD = cluster1 1000 cluster2 700 default 300

Used for cluster mode only.

When defined in both the Parameters section and the Feature section, the Feature
section definition is used for that license feature.

Default

300 seconds

PREEMPT_ORDER
Syntax

PREEMPT_ORDER=BY_OWNERSHIP

Description

Optional. Sets the preemption order based on configured OWNERSHIP.

Used for project mode only.

Default

Not defined.

PREEMPT_RESERVE
Syntax

PREEMPT_RESERVE=Y | N

Description

Optional. If PREEMPT_RESERVE=Y, enables License Scheduler to preempt either
licenses that are reserved or already in use by other projects. The number of jobs
must be greater than the number of licenses owned.

If PREEMPT_RESERVE=N, License Scheduler does not preempt reserved licenses.

Used for project mode only.

Default

Y. Reserved licenses are preemptable.

RETENTION_FACTOR
Syntax

RETENTION_FACTOR=integer%

lsf.licensescheduler

Chapter 6. Reference 133

Description

Ensures that when tokens are reclaimed from an overfed cluster, the overfed
cluster still gets to dispatch additional jobs, but at a reduced rate. Specify the
retention factor as a percentage of tokens to be retained by the overfed cluster.

For example:
Begin Feature
NAME = f1
CLUSTER_MODE = Y
CLUSTER_DISTRIBUTION = LanServer(LAN1 1 LAN2 1)
ALLOC_BUFFER = 20
RETENTION_FACTOR = 25%
End Feature

With RETENTION_FACTOR set, as jobs finish in the overfed cluster and free up
tokens, at least 25% of the tokens can be reused by the cluster to dispatch
additional jobs. Tokens not held by the cluster are redistributed to other clusters. In
general, a higher value means that the process of reclaiming tokens from an
overfed cluster takes longer, and an overfed cluster gets to dispatch more jobs
while tokens are being reclaimed from it.

Used for cluster mode only.

Default

Not defined

SERVICE_DOMAINS
Syntax

SERVICE_DOMAINS=service_domain_name ...

service_domain_name

Specify the name of the service domain.

Description

Required if GROUP_DISTRIBUTION is defined. Specifies the service domains that
provide tokens for this feature.

Only a single service domain can be specified when using cluster mode or fast
dispatch project mode.

WORKLOAD_DISTRIBUTION
Syntax

WORKLOAD_DISTRIBUTION=[service_domain_name(LSF lsf_distribution NON_LSF
non_lsf_distribution)] ...

service_domain_name

Specify a License Scheduler service domain (described in the ServiceDomain
section) that distributes the licenses.

lsf_distribution

Specify the share of licenses dedicated to LSF workloads. The share of licenses
dedicated to LSF workloads is a ratio of lsf_distribution:non_lsf_distribution.

lsf.licensescheduler

134 Using IBM Platform License Scheduler

non_lsf_distribution

Specify the share of licenses dedicated to non-LSF workloads. The share of
licenses dedicated to non-LSF workloads is a ratio of
non_lsf_distribution:lsf_distribution.

Description

Optional. Defines the distribution given to each LSF and non-LSF workload within
the specified service domain.

When running in cluster mode, WORKLOAD_DISTRIBUTION can only be specified for
WAN service domains; if defined for a LAN feature, it is ignored.

Use blinfo -a to display WORKLOAD_DISTRIBUTION configuration.

Example
Begin Feature
NAME=ApplicationX
DISTRIBUTION=LicenseServer1(Lp1 1 Lp2 2)
WORKLOAD_DISTRIBUTION=LicenseServer1(LSF 8 NON_LSF 2)
End Feature

On the LicenseServer1 domain, the available licenses are dedicated in a ratio of 8:2
for LSF and non-LSF workloads. This means that 80% of the available licenses are
dedicated to the LSF workload, and 20% of the available licenses are dedicated to
the non-LSF workload.

If LicenseServer1 has a total of 80 licenses, this configuration indicates that 64
licenses are dedicated to the LSF workload, and 16 licenses are dedicated to the
non-LSF workload.

FeatureGroup section
Description

Optional. Collects license features into groups. Put FeatureGroup sections after
Feature sections in lsf.licensescheduler.

The FeatureGroup section is supported in both project mode and cluster mode.

FeatureGroup section structure

The FeatureGroup section begins and ends with the lines Begin FeatureGroup and
End FeatureGroup. Feature group definition consists of a unique name and a list of
features contained in the feature group.

Example
Begin FeatureGroup
NAME = Synposys
FEATURE_LIST = ASTRO VCS_Runtime_Net Hsim Hspice
End FeatureGroup
Begin FeatureGroup
NAME = Cadence
FEATURE_LIST = Encounter NCSim NCVerilog
End FeatureGroup

lsf.licensescheduler

Chapter 6. Reference 135

Parameters
v NAME
v FEATURE_LIST

NAME
Required. Defines the name of the feature group. The name must be unique.

FEATURE_LIST
Required. Lists the license features contained in the feature group.The feature
names in FEATURE_LIST must already be defined in Feature sections. Feature
names cannot be repeated in the FEATURE_LIST of one feature group. The
FEATURE_LIST cannot be empty. Different feature groups can have the same
features in their FEATURE_LIST.

ProjectGroup section
Description

Optional. Defines the hierarchical relationships of projects.

Used for project mode only. When running in cluster mode, any ProjectGroup
sections are ignored.

The hierarchical groups can have multiple levels of grouping. You can configure a
tree-like scheduling policy, with the leaves being the license projects that jobs can
belong to. Each project group in the tree has a set of values, including shares,
limits, ownership and non-shared, or exclusive, licenses.

Use blstat -G to view the hierarchical dynamic license information.

Use blinfo -G to view the hierarchical configuration.

ProjectGroup section structure

Define a section for each hierarchical group managed by License Scheduler.

The keywords GROUP, SHARES, OWNERSHIP, LIMIT, and NON_SHARED are
required. The keywords PRIORITY and DESCRIPTION are optional. Empty
brackets are allowed only for OWNERSHIP, LIMIT, and PRIORITY. SHARES must
be specified.
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED PRIORITY
(root(A B C)) (1 1 1) () () () (3 2 -)
(A (P1 D)) (1 1) () () () (3 5)
(B (P4 P5)) (1 1) () () () ()
(C (P6 P7 P8)) (1 1 1) () () () (8 3 0)
(D (P2 P3)) (1 1) () () () (2 1)
End ProjectGroup

If desired, ProjectGroup sections can be completely independent, without any
overlapping projects.
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED(digital_sim (sim sim_reg)) (40 60) (100 0) () ()
End ProjectGroup
Begin ProjectGroup
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(analog_sim (app1 multitoken app1_reg)) (50 10 40) (65 25 0) (- 50 -) ()
End ProjectGroup

lsf.licensescheduler

136 Using IBM Platform License Scheduler

Parameters
v DESCRIPTION
v GROUP
v LIMITS
v NON_SHARED
v OWNERSHIP
v PRIORITY
v SHARES

DESCRIPTION
Optional. Description of the project group.

The text can include any characters, including white space. The text can be
extended to multiple lines by ending the preceding line with a backslash (\). The
maximum length for the text is 64 characters. When the DESCRIPTION column is
not empty it should contain one entry for each project group member.

For example:
GROUP SHARES OWNERSHIP LIMITS NON_SHARED DESCRIPTION
(R (A B)) (1 1) () () (10 10) ()
(A (p1 p2)) (1 1) (40 60) () () ("p1 desc." "")
(B (p3 p4)) (1 1) () () () ("p3 desc." "p4 desc.")

Use blinfo -G to view hierarchical project group descriptions.

GROUP
Defines the project names in the hierarchical grouping and its relationships. Each
entry specifies the name of the hierarchical group and its members.

For better readability, you should specify the projects in the order from the root to
the leaves as in the example.

Specify the entry as follows:

(group (member ...))

LIMITS
Defines the maximum number of licenses that can be used at any one time by the
hierarchical group member projects. Specify the maximum number of licenses for
each member, separated by spaces, in the same order as listed in the GROUP
column.

A dash (-) is equivalent to INFINIT_INT, which means there is no maximum limit
and the project group can use as many licenses as possible.

You can leave the parentheses empty () if desired.

NON_SHARED
Defines the number of licenses that the hierarchical group member projects use
exclusively. Specify the number of licenses for each group or project, separated by
spaces, in the same order as listed in the GROUP column.

A dash (-) is equivalent to a zero, which means there are no licenses that the
hierarchical group member projects use exclusively.

lsf.licensescheduler

Chapter 6. Reference 137

For hierarchical project froups in fast dispatch project mode, License Scheduler
ignores the NON_SHARED value configured for project groups, and only uses the
NON_SHARED value for the child projects. The project group's NON_SHARED
value is the sum of the NON_SHARED values of its child projects.

Normally, the total number of non-shared licenses should be less than the total
number of license tokens available. License tokens may not be available to project
groups if the total non-shared licenses for all groups is greater than the number of
shared tokens available.

For example, feature p4_4 is configured as follows, with a total of 4 tokens:
Begin Feature
NAME =p4_4 # total token value is 4
GROUP_DISTRIBUTION=final
SERVICE_DOMAINS=LanServer
End Feature

The correct configuration is:
GROUP SHARES OWNERSHIP LIMITS NON_SHARED
(final (G2 G1)) (1 1) () () (2 0)
(G1 (AP2 AP1)) (1 1) () () (1 1)

Valid values

Any positive integer up to the LIMITS value defined for the specified hierarchical
group.

If defined as greater than LIMITS, NON_SHARED is set to LIMITS.

OWNERSHIP
Defines the level of ownership of the hierarchical group member projects. Specify
the ownership for each member, separated by spaces, in the same order as listed in
the GROUP column.

You can only define OWNERSHIP for hierarchical group member projects, not
hierarchical groups. Do not define OWNERSHIP for the top level (root) project
group. Ownership of a given internal node is the sum of the ownership of all child
nodes it directly governs.

A dash (-) is equivalent to a zero, which means there are no owners of the projects.
You can leave the parentheses empty () if desired.

Valid values

A positive integer between the NON_SHARED and LIMITS values defined for the
specified hierarchical group.
v If defined as less than NON_SHARED, OWNERSHIP is set to NON_SHARED.
v If defined as greater than LIMITS, OWNERSHIP is set to LIMITS.

PRIORITY
Optional. Defines the priority assigned to the hierarchical group member projects.
Specify the priority for each member, separated by spaces, in the same order as
listed in the GROUP column.

“0” is the lowest priority, and a higher number specifies a higher priority. This
column overrides the default behavior. Instead of preempting based on the

lsf.licensescheduler

138 Using IBM Platform License Scheduler

accumulated inuse usage of each project, the projects are preempted according to
the specified priority from lowest to highest.

By default, priorities are evaluated top down in the project group hierarchy. The
priority of a given node is first decided by the priority of the parent groups. When
two nodes have the same priority, priority is determined by the accumulated inuse
usage of each project at the time the priorities are evaluated. Specify
LS_PREEMPT_PEER=Y in the Parameters section to enable bottom-up license
token preemption in hierarchical project group configuration.

A dash (-) is equivalent to a zero, which means there is no priority for the project.
You can leave the parentheses empty () if desired.

Use blinfo -G to view hierarchical project group priority information.

Priority of default project

If not explicitly configured, the default project has the priority of 0. You can
override this value by explicitly configuring the default project in Projects section
with the chosen priority value.

SHARES
Required. Defines the shares assigned to the hierarchical group member projects.
Specify the share for each member, separated by spaces, in the same order as listed
in the GROUP column.

Projects section
Description

Required for project mode only. Ignored in cluster mode. Lists the License
Scheduler projects.

Projects section structure

The Projects section begins and ends with the lines Begin Projects and End
Projects. The second line consists of the required column heading PROJECTS and the
optional column heading PRIORITY. Subsequent lines list participating projects, one
name per line.

Examples

The following example lists the projects without defining the priority:
Begin Projects
PROJECTS
Lp1
Lp2
Lp3
Lp4
...
End Projects

The following example lists the projects and defines the priority of each project:
Begin Projects
PROJECTS PRIORITY
Lp1 3
Lp2 4
Lp3 2

lsf.licensescheduler

Chapter 6. Reference 139

Lp4 1
default 0
...
End Projects

Parameters
v DESCRIPTION
v PRIORITY
v PROJECTS

DESCRIPTION
Optional. Description of the project.

The text can include any characters, including white space. The text can be
extended to multiple lines by ending the preceding line with a backslash (\). The
maximum length for the text is 64 characters.

Use blinfo -Lp to view the project description.

PRIORITY
Optional. Defines the priority for each project where “0” is the lowest priority, and
the higher number specifies a higher priority. This column overrides the default
behavior. Instead of preempting in order the projects are listed under PROJECTS
based on the accumulated inuse usage of each project, the projects are preempted
according to the specified priority from lowest to highest.

Used for project mode only.

When 2 projects have the same priority number configured, the first project listed
has higher priority, like LSF queues.

Use blinfo -Lp to view project priority information.

Priority of default project

If not explicitly configured, the default project has the priority of 0. You can
override this value by explicitly configuring the default project in Projects section
with the chosen priority value.

PROJECTS
Defines the name of each participating project. Specify using one name per line.

Automatic time-based configuration
Variable configuration is used to automatically change License Scheduler license
token distribution policy configuration based on time windows. You define
automatic configuration changes in lsf.licensescheduler by using if-else
constructs and time expressions in the Feature section. After you change the file,
check the configuration with the bladmin ckconfig command, and restart License
Scheduler in the cluster with the bladmin reconfig command.

Used for both project mode and cluster mode.

The expressions are evaluated by License Scheduler every 10 minutes based on the
bld start time. When an expression evaluates true, License Scheduler dynamically
changes the configuration based on the associated configuration statements,
restarting bld automatically.

lsf.licensescheduler

140 Using IBM Platform License Scheduler

When LSF determines a feature has been added, removed, or changed, mbatchd no
longer restarts automatically. Instead a message indicates that a change has been
detected, prompting the user to restart manually with badmin mbdrestart.

This affects automatic time-based configuration in the Feature section of
lsf.licensescheduler. When mbatchd detects a change in the Feature
configuration, you must restart mbatchd for the change to take effect.

Example
Begin Feature
NAME = f1
#if time(5:16:30-1:8:30 20:00-8:30)
DISTRIBUTION=Lan(P1 2/5 P2 1)
#elif time(3:8:30-3:18:30)
DISTRIBUTION=Lan(P3 1)
#else
DISTRIBUTION=Lan(P1 1 P2 2/5)
#endif
End Feature

bladmin
Administrative tool for License Scheduler.

Synopsis

bladmin subcommand

bladmin [-h | -V]

Description

bladmin provides a set of subcommands to control License Scheduler.

You must be root or a License Scheduler administrator to use this command.

Subcommand synopsis

ckconfig

reconfig [host_name ... | all]

shutdown [host_name ... | all]

blddebug [-c class_name ...] [-l debug_level] [-f logfile_name] [-o]

blcdebug [-l debug_level] [-f logfile_name] [-o] collector_name ... | all

-h

-V

Usage

ckconfig

Checks License Scheduler configuration in LSF_ENVDIR/lsf.licensescheduler
and lsf.conf.

lsf.licensescheduler

Chapter 6. Reference 141

By default, bladmin ckconfig displays only the result of the configuration file
check. If warning errors are found, bladmin prompts you to enter "y" to display
detailed messages.

reconfig [host_name ... | all]

Reconfigures License Scheduler.

shutdown [host_name ... | all]

Shuts down License Scheduler.

blddebug [-c class_name ...] [-l debug_level] [-f logfile_name] [-o]

Sets the message log level for bld to include additional information in log files.
You must be root or the LSF administrator to use this command.

If the bladmin blddebug is used without any options, the following default
values are used:
v class_name=0 (no additional classes are logged)
v debug_level=0 (LOG_DEBUG level in parameter LS_LOG_MASK)
v logfile_name=current LSF system log file in the LSF system log file directory,

in the format daemon_name.log.host_name

-c class_name ...

Specifies software classes for which debug messages are to be logged.

Format of class_name is the name of a class, or a list of class names
separated by spaces and enclosed in quotation marks. Classes are also
listed in lsf.h.

Valid log classes:
v LC_AUTH: Log authentication messages
v LC_COMM: Log communication messages
v LC_FLEX: Log everything related to FLEX_STAT or FLEX_EXEC Flexera

APIs
v LC_LICENCE: Log license management messages
v LC_PREEMPT: Log preemption policy messages
v LC_RESREQ: Log resource requirement messages
v LC_TRACE: Log significant program walk steps
v LC_XDR: Log everything transferred by XDR

Default: 0 (no additional classes are logged)

-l debug_level

Specifies level of detail in debug messages. The higher the number, the
more detail that is logged. Higher levels include all lower logging levels.
For example, LOG_DEBUG3 includes LOG_DEBUG2 LOG_DEBUG1, and
LOG_DEBUG levels.

Possible values:

0 LOG_DEBUG level in parameter LS_LOG_MASK in lsf.conf.

1 LOG_DEBUG1 level for extended logging.

2 LOG_DEBUG2 level for extended logging.

3 LOG_DEBUG3 level for extended logging.

Default: 0 (LOG_DEBUG level in parameter LS_LOG_MASK)

bladmin

142 Using IBM Platform License Scheduler

-f logfile_name

Specifies the name of the file where debugging messages are logged. The
file name can be a full path. If a file name without a path is specified, the
file is saved in the LSF system log directory.

The name of the file has the following format:

logfile_name.daemon_name.log.host_name

On UNIX, if the specified path is not valid, the log file is created in the
/tmp directory.

On Windows, if the specified path is not valid, no log file is created.

Default: current LSF system log file in the LSF system log file directory.

-o

Turns off temporary debug settings and resets them to the daemon starting
state. The message log level is reset back to the value of LS_LOG_MASK
and classes are reset to the value of LSB_DEBUG_BLD. The log file is also
reset back to the default log file.

blcdebug [-l debug_level] [-f logfile_name] [-o] collector_name | all

Sets the message log level for blcollect to include additional information in
log files. You must be root or the LSF administrator to use this command.

If the bladmin blcdebug is used without any options, the following default
values are used:
v debug_level=0 (LOG_DEBUG level in parameter LS_LOG_MASK)
v logfile_name=current LSF system log file in the LSF system log file directory,

in the format daemon_name.log.host_name

v collector_name=default

-l debug_level

Specifies level of detail in debug messages. The higher the number, the
more detail that is logged. Higher levels include all lower logging levels.
For example, LOG_DEBUG3 includes LOG_DEBUG2 LOG_DEBUG1, and
LOG_DEBUG levels.

Possible values:

0 LOG_DEBUG level in parameter LS_LOG_MASK in lsf.conf.

1 LOG_DEBUG1 level for extended logging.

2 LOG_DEBUG2 level for extended logging.

3 LOG_DEBUG3 level for extended logging.

Default: 0 (LOG_DEBUG level in parameter LS_LOG_MASK)

-f logfile_name

Specifies the name of the file where debugging messages are logged. The
file name can be a full path. If a file name without a path is specified, the
file is saved in the LSF system log directory.

The name of the file has the following format:

logfile_name.daemon_name.log.host_name

On UNIX, if the specified path is not valid, the log file is created in the
/tmp directory.

bladmin

Chapter 6. Reference 143

On Windows, if the specified path is not valid, no log file is created.

Default: current LSF system log file in the LSF system log file directory.

-o

Turns off temporary debug settings and resets them to the daemon starting
state. The message log level is reset back to the value of LS_LOG_MASK
and classes are reset to the value of LSB_DEBUG_BLD. The log file is also
reset back to the default log file.

If a collector name is not specified, default value is to restore the original
log mask and log file directory for the default collector.

collector_name ... | all

Specifies the collector names separated by blanks. all means all the
collectors.

-h

Prints command usage to stderr and exits.

-V

Prints release version to stderr and exits.

See also

blhosts, lsf.licensescheduler, lsf.conf

blcollect
license information collection daemon that collects license usage information

Synopsis

blcollect -c collector_name -m host_name [...] -p license_scheduler_port [-i
lmstat_interval | -D lmstat_path] [-t timeout]

blcollect [-h | -V]

Description

Periodically collects license usage information from Flexera FlexNet. It queries
FlexNet for license usage information from the FlexNet lmstat command, and
passes the information to the License Scheduler daemon (bld). The blcollect
daemon improves performance by allowing you to distribute license information
queries on multiple hosts.

By default, license information is collected from FlexNet on one host. Use
blcollect to distribute the license collection on multiple hosts.

For each service domain configuration in lsf.licensescheduler, specify one name
for blcollect to use. You can only specify one collector per service domain, but
you can specify one collector to serve multiple service domains. You can choose
any collector name you want, but must use that exact name when you run
blcollect.

bladmin

144 Using IBM Platform License Scheduler

Options

-c

Required. Specify the collector name you set in lsf.licensescheduler. You
must use the collector name (LIC_COLLECTOR) you define in the ServiceDomain
section of the configuration file.

-m

Required. Specifies a space-separated list of hosts to which license information
is sent. The hosts do not need to be running License Scheduler or a FlexNet.
Use fully qualified host names.

-p

Required. You must specify the License Scheduler listening port, which is set in
lsf.licensescheduler and has a default value of 9581.

-i lmstat_interval

Optional. The frequency in seconds of the calls that License Scheduler makes
to lmstat to collect license usage information from FlexNet.

The default interval is 60 seconds.

-D lmstat_path

Optional. Location of the FlexNet command lmstat.

-t timeout

Optional. Timout value passed to the FlexNet command lmstat, overwriting
the value defined by LM_STAT_TIMEOUT in the Parameters or ServiceDomain
section of the lsf.licensescheduler file.

-h

Prints command usage to stderr and exits.

-V

Prints release version to stderr and exits.

See also

lsf.licensescheduler

blcstat
displays dynamic blcollect update information for License Scheduler.

Synopsis

blcstat [-l] [collector_name ...]

blcstat [-h | -V]

Description

Displays the time each license collector daemon (bcollect) last sent an update to
bld, along with the current status of each blcollect.

blcollect

Chapter 6. Reference 145

Options

-l

Long format. Displays detailed information for each blcollect in a multiline
format.

collector_name

Displays information only for the specified blcollect daemons.

-h

Prints command usage to stderr and exits.

-V

Prints the release version to stderr and exits.

Output

COLLECTOR_NAME

The name of the license collector daemon as defined by
LIC_COLLECTOR=license_collector_name in the ServiceDomain sections of the
lsf.licensescheduler file. By default, the name is _default_.

STATUS

The current status of the collector.
v ok: The collector is working and all license servers can be reached.
v -ok: The collector is working, however, not all licenses servers can be

reached
v unavail: The collector cannot be reached.

LAST_UPD_TIME

The time the last update was received by bld for this collector.

-l Output

The -l option displays a long format listing with the following additional fields:

HOST_NAME

The name of the host running this collector.

LICENSE_SERVER

The license server configured in the ServiceDomain section
lsf.licensescheduler for this collector.

Multiple lines indicate multiple license servers.

Multiple entries in one line separated by ’|’ indicate configured redundant
license servers (sharing the same license file).

License server state is one of:
v reachable: The license server is running and providing information to

lmstat.
v unreachable: The license server is not running, or some other problem has

blocked the flow of information to lmstat.
v unknown: blcollect is down.

FEATURES

blcstat

146 Using IBM Platform License Scheduler

The names of features running on license servers for this collector.

LMSTAT_INTERVAL

The interval between updates from this collector as set by the
LM_STAT_INTERVAL parameter in the Parameters or ServiceDomain section of the
lsf.licensescheduler file, or by blcollect at collector startup.

See also

blcollect

blhosts
displays the names of all the hosts running the License Scheduler daemon (bld)

Synopsis

blhosts [-h | -V]

Description

Displays a list of hosts running the License Scheduler daemon. This includes the
License Scheduler master host and all the candidate License Scheduler hosts
running bld.

Options

-h

Prints command usage to stderr and exits.

-V

Prints release version to stderr and exits.

Output

Prints out the names of all the hosts running the License Scheduler daemon (bld).

For example, the following sample output shows the License Scheduler master host
and two candidate License Scheduler hosts running bld:
bld is running on:
master: host1.domain1.com
slave: host2.domain1 host3.domain1

See also

blinfo, blstat, bladmin

blinfo
Displays static License Scheduler configuration information

Synopsis

blinfo -Lp | -p | -D | -G | -P

blinfo [-a [-t token_name | "token_name ..."]] [-o alpha | total] [-g "feature_group ..."]

blcstat

Chapter 6. Reference 147

blinfo -A [-t token_name | "token_name ..."] [-o alpha | total] [-g "feature_group ..."]

blinfo -C [-t token_name | "token_name ..."] [-o alpha | total] [-g "feature_group ..."]

blinfo [-t token_name | "token_name ..."] [-o alpha | total] [-g "feature_group ..."]

blinfo [-h | -V]

Description

Displays different license configuration information, depending on the option
selected.

By default, displays information about the distribution of licenses managed by
License Scheduler.

Options (cluster mode and project mode)

-a

Shows all information, including information about non-shared licenses
(NON_SHARED_DISTRIBUTION) and workload distribution
(WORKLOAD_DISTRIBUTION).

You can optionally provide license token names.

blinfo -a does not display NON_SHARED information for hierarchical project
group scheduling policies. Use blinfo -G to see hierarchical group
configuration.

-C

Shows the cluster locality information for the features.

You can optionally provide license token names.

-D

Lists the License Scheduler service domains and the corresponding FlexNet
license server hosts.

-g feature_group ...

When FEATURE_GROUP is configured for a group of license features in
lsf.licensescheduler, shows only information about the features configured
in the FEATURE_LIST of specified feature groups. You can specify more than one
feature group at one time.

When you specify feature names with -t, features in the feature list defined by
-t and feature groups are both displayed.

Feature groups listed with -g but not defined in lsf.licensescheduler are
ignored.

-o alpha | total

Sorts license feature information by total tokens.
v alpha: Features are listed in descending alphabetical order.
v total: Features are sorted by the descending order of the sum of licenses that

are allocated to LSF workload from all the service domains configured to
supply licenses to the feature. Licenses borrowed by non-LSF workload are
included in this amount.

blinfo

148 Using IBM Platform License Scheduler

-p

Displays values of lsf.licensescheduler configuration parameters and
lsf.conf parameters related to License Scheduler. This is useful for
troubleshooting.

-t token_name | "token_name ..."

Only shows information about specified license tokens. Use spaces to separate
multiple names, and enclose them in quotation marks.

-P

When LS_FEATURE_PERCENTAGE=Y or LS_ACTIVE_PERCENTAGE=Y, lists the license
ownership (if applicable) in percentage.

-h

Prints command usage to stderr and exits.

-V

Prints the License Scheduler release version to stderr and exits.

Options (project mode only)

-A

When LOCAL_TO is configured for a feature in lsf.licensescheduler, shows the
feature allocation by cluster locality.

You can optionally provide license token names.

-G

Lists the hierarchical configuration information.

If PRIORITY is defined in the ProjectGroup Section of lsf.licensescheduler,
this option also shows the priorities of each project.

-Lp

Lists the active projects managed by License Scheduler.

-Lp only displays projects associated with configured features.

If PRIORITY is defined in the Projects Section of lsf.licensescheduler, this
option also lists the priorities of each project.

Default output

Displays the following fields:

FEATURE

The license name. This becomes the license token name.

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo
shows the cluster locality information for the license features.

MODE

The mode of the license:

Cluster
Cluster mode

Project
Project mode

blinfo

Chapter 6. Reference 149

SERVICE_DOMAIN

The name of the service domain that provided the license.

TOTAL

The total number of licenses managed by FlexNet. This number comes from
FlexNet.

DISTRIBUTION

The distribution of the licenses among license projects in the format
[project_name, percentage[/number_licenses_owned]]. This determines how many
licenses a project is entitled to use when there is competition for licenses. The
percentage is calculated from the share specified in the configuration file.

All output (-a)

As default output, plus all other feature-level parameters defined for each feature.

Cluster locality output (-C)

NAME

The license feature token name.

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo
shows the cluster locality information for the license features.

FLEX_NAME

The actual FlexNet feature name—the name used by FlexNet to identify the
type of license. May be different from the License Scheduler token name if a
different FLEX_NAME is specified in lsf.licensescheduler.

CLUSTER_NAME

The name of the cluster the feature is assigned to.

FEATURE

The license feature name. This becomes the license token name.

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo
shows the cluster locality information for the license features.

SERVICE_DOMAIN

The service domain name.

Service Domain Output (-D)

SERVICE_DOMAIN

The service domain name.

LIC_SERVERS

Names of FlexNet license server hosts that belong the to service domain. Each
host name is enclosed in parentheses, as shown:

(port_number@host_name)

Redundant hosts (that share the same FlexNet license file) are grouped
together as shown:

(port_number@host_name port_number@host_name port_number@host_name)

blinfo

150 Using IBM Platform License Scheduler

Parameters Output (-p)

Displays values set in the Parameters section of lsf.licensescheduler.

Displays the following parameter values from lsf.conf:

LS_LOG_MASK or LOG_MASK

Specifies the logging level of error messages for License Scheduler daemons. If
LS_LOG_MASK is not defined in lsf.licensescheduler, the value of
LSF_LOG_MASK in lsf.conf is used. If neither LS_LOG_MASK nor
LSF_LOG_MASK is defined, the default is LOG_WARNING.

For example:
LS_LOG_MASK=LOG_DEBUG

The log levels in order from highest to lowest are:
v LOG_WARNING
v LOG_DEBUG
v LOG_DEBUG1
v LOG_DEBUG2
v LOG_DEBUG3

The most important License Scheduler log messages are at the
LOG_WARNING level. Messages at the LOG_DEBUG level are only useful for
debugging.

LSF_LIC_SCHED_HOSTS

List of hosts that are candidate License Scheduler hosts. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_REQUEUE

Specifies whether to requeue or suspend a job whose license is preempted by
License Scheduler. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE

Specifies whether to release the resources of a job that is suspended when its
license is preempted by License Scheduler. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_STOP

Specifies whether to use job controls to stop a job that is preempted. Defined
in lsf.conf.

Allocation output (-A, project mode)

FEATURE

The license name. This becomes the license token name.

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blinfo
shows the cluster locality information for the license features.

PROJECT

The License Scheduler project name.

ALLOCATION

The percentage of shares assigned to each cluster for a feature and a project.

blinfo

Chapter 6. Reference 151

Hierarchical Output (-G, project mode)

The following fields describe the values of their corresponding configuration fields
in the ProjectGroup Section of lsf.licensescheduler.

GROUP

The project names in the hierarchical grouping and its relationships. Each entry
specifies the name of the hierarchical group and its members. The entry is
enclosed in parentheses as shown:

(group (member ...))

SHARES

The shares assigned to the hierarchical group member projects.

OWNERSHIP

The number of licenses that each project owns.

LIMITS

The maximum number of licenses that the hierarchical group member project
can use at any one time.

NON_SHARED

The number of licenses that the hierarchical group member projects use
exclusively.

PRIORITY

The priority of the project if it is different from the default behavior. A larger
number indicates a higher priority.

DESCRIPTION

The description of the project group.

Project Output (-Lp, project mode)

List of active License Scheduler projects.

-Lp only displays projects associated with configured features.

PROJECT

The project name.

PRIORITY

The priority of the project if it is different from the default behavior. A larger
number indicates a higher priority.

DESCRIPTION

The description of the project.

Examples

blinfo -a (project mode) displays both NON_SHARED_DISTRIBUTION and
WORKLOAD_DISTRIBUTION information when they are defined:
blinfo -a
FEATURE SERVICE_DOMAIN TOTAL DISTRIBUTION
g1 LS 3 [p1, 50.0%] [p2, 50.0% / 2]

NON_SHARED_DISTRIBUTION

blinfo

152 Using IBM Platform License Scheduler

[p2, 2]
WORKLOAD_DISTRIBUTION
[LSF 66.7%, NON_LSF 33.3%]

Files

Reads lsf.licensescheduler

See also

blstat, blusers, lsf.licensescheduler, lsf.conf

blkill
terminates an interactive (taskman) License Scheduler task

Synopsis

blkill [-t seconds] task_ID

blkill [-h | -V]

Description

Terminates a running or waiting interactive task in License Scheduler.

Users can kill their own tasks. You must be a License Scheduler administrator to
terminate another user’s task.

By default, blkill notifies the user and waits 60 seconds before killing the task.

Options

task_ID

Task ID of the task you want to kill.

-t seconds

Specify how many seconds to delay before killing the task. A value of 0 means
to kill the task immediately (do not give the user any time to save work).

-h

Prints command usage to stderr and exits.

-V

Prints License Scheduler release version to stderr and exits.

blparams
displays information about configurable License Scheduler parameters defined in
the files lsf.licensescheduler and lsf.conf

Synopsis

blparams [-h | -V]

blinfo

Chapter 6. Reference 153

Description

Displays values set in the Parameters section of lsf.licensescheduler.

Displays the following parameter values from lsf.conf:

LS_LOG_MASK or LOG_MASK

Specifies the logging level of error messages for License Scheduler daemons. If
LS_LOG_MASK is not defined in lsf.licensescheduler, the value of
LSF_LOG_MASK in lsf.conf is used. If neither LS_LOG_MASK nor
LSF_LOG_MASK is defined, the default is LOG_WARNING.

For example:
LS_LOG_MASK=LOG_DEBUG

The log levels in order from highest to lowest are:
v LOG_WARNING
v LOG_DEBUG
v LOG_DEBUG1
v LOG_DEBUG2
v LOG_DEBUG3

The most important License Scheduler log messages are at the
LOG_WARNING level. Messages at the LOG_DEBUG level are only useful for
debugging.

LSF_LIC_SCHED_HOSTS

List of hosts that are candidate License Scheduler hosts. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_REQUEUE

Specifies whether to requeue or suspend a job whose license is preempted by
License Scheduler. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_SLOT_RELEASE

Specifies whether to release the slot of a job that is suspended when its license
is preempted by License Scheduler. Defined in lsf.conf.

LSF_LIC_SCHED_PREEMPT_STOP

Specifies whether to use job controls to stop a job that is preempted. Defined
in lsf.conf.

Options

-h

Prints command usage to stderr and exits.

-V

Prints LSF release version to stderr and exits.

See also

lsf.licensescheduler, lsf.conf

blstat
displays dynamic license information

blparams

154 Using IBM Platform License Scheduler

Synopsis

blstat [-s] [-S] [-D service_domain_name | "service_domain_name ..."] [-P][-t
token_name | "token_name ..."] [-o alpha | total | avail] [-g "feature_group ..."]
[-slots]

blstat [-a] [-c token_name] [-G] [-Lp ls_project_name | "ls_project_name ..."]

blstat [-h | -V]

Description

Displays license usage statistics for License Scheduler.

By default, shows information about all licenses and all clusters.

Options (cluster mode and project mode)

-S

Displays information on the license servers associated with license features.

-s

Displays license usage of the LSF and non-LSF workloads. Workload
distributions are defined by WORKLOAD_DISTRIBUTION in lsf.licensescheduler.
If there are any distribution policy violations, blstat marks these with an
asterisk (*) at the beginning of the line.

-D service_domain_name | "service_domain_name ..."

Only shows information about specified service domains. Use spaces to
separate multiple names, and enclose them in quotation marks.

-g feature_group ...

When FEATURE_GROUP is configured for a group of license features in
lsf.licensescheduler, shows information about features configured in the
FEATURE_LIST of specified feature groups. You can specify more than one
feature group.

When you specify feature names with -t, features in the FEATURE_LIST defined
by -t and feature groups are both displayed.

Feature groups listed but not defined in lsf.licensescheduler are ignored.

-slots

Displays how many slots are using currently by License Scheduler jobs
(Current job slots in use) and the peak number of slots in use (Peak job
slots used).

-o alpha | total | avail

Sorts license feature information alphabetically, by total licenses, or by
available licenses.
v alpha: Features are listed in descending alphabetical order.
v total: Features are sorted by the descending order of the sum of licenses that

are allocated to LSF workload from all the service domains configured to
supply licenses to the feature. Licenses borrowed by non-LSF workload are
not included in this amount.

blstat

Chapter 6. Reference 155

v avail: Features are sorted by descending order of licenses available,
including free tokens.

-P

Displays percentage values for INUSE and RESERVE. The percentage value
represents the number of tokens this project has used and reserved compared
to total number of licenses.

-t token_name | "token_name ..."

Only shows information about specified license tokens. Use spaces to separate
multiple names, and enclose them in quotation marks.

-h

Prints command usage to stderr and exits.

-V

Prints the release version to stderr and exits.

Options (project mode only)

-a

Displays each project group’s accumulated value of licenses. The license token
dispatching order is based on the sort order, which is based on the scaled
accumulate value of each project. The lower the value, the sooner the license
token is dispatched to that project.

-c token_name

Displays cross cluster information for tokens.

In project mode, the information is sorted by the value of SCALED_ACUM. The
first cluster listed receives tokens first.

Information displayed includes token usage, reserved tokens, free tokens,
demand for tokens, accumulated value of tokens, and scaled accumulate value
of tokens in each cluster.

For fast dispatch project mode, also displays the actual and ideal number of
tokens allocated to the cluster:
v TARGET: The ideal amount of licenses allocated to the cluster
v OVER: The number of licenses checked out by RUN jobs in the cluster

under the license projects in excess of the rusage
v FREE: The number of license allocated to the cluster but not used.
v DEMAND: The number of tokens required by the cluster under the license

project

-G

Displays dynamic hierarchical license information.

blstat -G also works with the -t option to only display hierarchical
information for the specified feature names.

-Lp ls_project_name | "ls_project_name ..."

Shows project description for specified projects (non-hierarchical). Use spaces
to separate multiple names and enclose them in quotation marks.

If project group paths are enabled (PROJECT_GROUP_PATH=Y in
lsf.licensescheduler), blstat -Lp displays the license projects associated with

blstat

156 Using IBM Platform License Scheduler

|
|

|

|
|

|

|
|

the specified project for all features. blstat -Lp -t displays the associated
license projects for the specified feature. If the parameter is disabled, only the
specified project is displayed.

Output

Information is organized first by license feature, then by service domain. For each
combination of license and service domain, License Scheduler displays a line of
summary information followed by rows of license project or cluster information.

In each group of statistics, numbers and percentages refer only to licenses of the
specified license feature that can be checked out from FlexNet license server hosts
in the specified service domain.

Cluster mode summary output

FEATURE

The license name. (This appears only once for each feature.)

SERVICE_DOMAIN

The name of the service domain that provided the license.

TOTAL_TOKENS

The number of licenses from this service domain reserved for License
Scheduler jobs.

TOTAL_ALLOC

The number of licenses from this service domain allocated to clusters by
License Scheduler.

In most cases TOTAL_ALLOC is equal to TOTAL_USE, however, when there are
licenses counted under OTHERS or when tokens are reclaimed, TOTAL_ALLOC may
be less than TOTAL_TOKENS.

TOTAL_USE

The number of licenses in use by License Scheduler projects, determined by
totalling all INUSE, RESERVE, and OVER values.

OTHERS

The number of licenses checked out by applications outside of License
Scheduler.

Cluster output (cluster mode)

For each cluster that is configured to use the license, blstat displays the following
information.

CLUSTER

The cluster name.

SHARE

The percentage of licenses assigned to the license project by the License
Scheduler administrator. This determines how many licenses the project is
entitled to when there is competition for licenses. This information is static,
and for a LAN service domain is always 100%.

blstat

Chapter 6. Reference 157

The percentage is calculated to one decimal place using the share assignment
in lsf.licensescheduler.

ALLOC

The number of licenses currently allocated to the cluster by the bld.

TARGET

The ideal amount of licenses allocated to the cluster. Normally, this amount is
the same as the ALLOC field, but the values may temporarily be different. For
example, when reclaiming a license, where one cluster is using more than its
allocation, which prevents another cluster from getting its ideal amount.

INUSE

The number of licenses checked out by jobs in the cluster.

RESERVE

The number of licenses reserved in the service domain for jobs running in the
cluster. This is determined as the difference between the job rusage and the
number of checked out licenses attributed to the job by License Scheduler.

If the same license is available from both LAN and WAN service domains in
cluster mode, License Scheduler expects jobs to try to obtain the license from
the LAN first. It is the responsibility of the administrator to ensure that
applications bahave in this manner, using the FlexNet environment variable
LM_LICENSE_FILE.

OVER

The amount of license checkouts exceeding rusage, summed over all jobs.

PEAK

The maximum of INUSE+RESERVE+OVER observed over the past 5 minutes (by
default), The observation period is set by PEAK_INUSE_PERIOD in either the
Parameters or Feature section.

PEAK is used in scheduling to estimate the cluster’s capacity to use licenses in
this service domain.

BUFFER

The optional allocation buffer configured in the Feature section ALLOC_BUFFER
parameter for WAN service domains. When defined, dynamic license token
allocation is enabled.

FREE

The number of licenses the cluster has free. (The license tokens have been
allocated to the license project by License Scheduler, but the licenses are not
reserved and have not yet been checked out from the FlexNet license manager.)

DEMAND

Numeric value indicating the number of tokens required by each cluster.

Project mode summary output

FEATURE

The license name. (This appears only once for each feature.)

SERVICE_DOMAIN

The name of the service domain that provided the license.

blstat

158 Using IBM Platform License Scheduler

TOTAL_INUSE

The number of licenses in use by License Scheduler projects. (Licenses in use
have been checked out from the FlexNet license manager.)

TOTAL_RESERVE

The number of licenses reserved for License Scheduler projects. (Licenses that
are reserved and have not been checked out from the FlexNet license manager.)

TOTAL_FREE

The number of free licenses that are available to License Scheduler projects.
(Licenses that are not reserved or in use.)

OTHERS

The number of licenses checked out by users who are not submitting their jobs
to License Scheduler projects.

By default, in project mode these licenses are not being managed by License
Scheduler policies.

To enforce license distribution policies for these license features, configure
ENABLE_DYNAMIC_RUSAGE=Y in the Feature section for those features in
lsf.licensescheduler. (Project mode only.)

Workload output (both modes)

LSF_USE

The total number of licenses in use by License Scheduler projects in the LSF
workload.

LSF_DESERVE

The total number of licenses assigned to License Scheduler projects in the LSF
workload.

LSF_FREE

The total number of free licenses available to License Scheduler projects in the
LSF workload.

NON_LSF_USE

The total number of licenses in use by projects in the non-LSF workload.

NON_LSF_DESERVE

The total number of licenses assigned to projects in the non-LSF workload.

NON_LSF_FREE

The total number of free licenses available to projects in the non-LSF workload.

Project output (project mode)

For each project that is configured to use the license, blstat displays the following
information.

PROJECT

The License Scheduler project name.

SHARE

blstat

Chapter 6. Reference 159

The percentage of licenses assigned to the license project by the License
Scheduler administrator. This determines how many licenses the project is
entitled to when there is competition for licenses. This information is static.

The percentage is calculated to one decimal place using the share assignment
in lsf.licensescheduler.

LIMITS

The maximum number of licenses that the hierarchical project group member
project can use at any one time.

OWN

Numeric value indicating the number of tokens owned by each project.

INUSE

The number of licenses in use by the license project. (Licenses in use have been
checked out from the FlexNet license manager.)

RESERVE

The number of licenses reserved for the license project. (The corresponding job
has started to run, but has not yet checked out its license from the FlexNet
license manager.)

FREE

The number of licenses the license project has free. (The license tokens have
been allocated to the license project by License Scheduler, but the licenses are
not reserved and have not yet been checked out from the FlexNet license
manager.)

DEMAND

Numeric value indicating the number of tokens required by each project.

NON_SHARED

The number of non-shared licenses belonging to the license project. (The
license tokens allocated to non-shared distribution are scheduled before the
tokens allocated to shared distribution.)

DESCRIPTION

Description of the project.

ACUM_USE

The number of tokens accumulated by each consumer at runtime. It is the
number of licenses assigned to a given consumer for a specific feature.

SCALED_ACUM

The number of tokens accumulated by each consumer at runtime divided by
the SHARE value. License Scheduler uses this value to schedule the tokens for
each project.

Cross cluster token output (project mode)

For each project that is configured to use the license, blstat -c displays the
following information.

PROJECT

The License Scheduler project name.

blstat

160 Using IBM Platform License Scheduler

CLUSTER
The name of a cluster using the project.

INUSE

The number of licenses in use by the license project. (Licenses in use have been
checked out from the FlexNet license manager.)

RESERVE

The number of licenses reserved for the license project. (The corresponding job
has started to run, but has not yet checked out its license from the FlexNet
license manager.)

FREE

The number of licenses the license project has free. (The license tokens have
been allocated to the license project by License Scheduler, but the licenses are
not reserved and have not yet been checked out from the FlexNet license
manager.)

NEED
The total number of tokens required by pending jobs (rusage).

ACUM_USE

The number of tokens accumulated by each consumer at runtime. It is the
number of licenses assigned to a given consumer for a specific feature.

SCALED_ACUM

The number of tokens accumulated by each consumer at runtime divided by
the SHARE value. License Scheduler uses this value to schedule the tokens for
each project.

Cross cluster token output (fast dispatch project mode)

For each project in fast dispatch project mode that is configured to use the license,
blstat -c displays the following information.

PROJECT

The License Scheduler project name.

CLUSTER
The name of a cluster using the project.

ALLOC

The actual number of licenses currently allocated to the cluster. It is possible
that the sum of licenses in the INUSE, RESERVE, and OVER fields is larger
than ALLOC. In this case, the number of tokens that the cluster occupies will
eventually decrease towards the ALLOC value after the job finishes.

The percentage is calculated to one decimal place using the share assignment
in lsf.licensescheduler.

TARGET

The ideal amount of licenses allocated to the cluster. Normally, this amount is
the same as the ALLOC field, but the values may temporarily be different. For
example, when reclaiming a license, where one cluster is using more than its
allocation, which prevents another cluster from getting its ideal amount.

INUSE

blstat

Chapter 6. Reference 161

The number of licenses in use by the cluster under the license project (Licenses
in use have been checked out from the FlexNet license manager).

RESERVE

The number of licenses reserved by jobs in the cluster under the license project
(The corresponding job has started to run, but has not yet checked out its
license from the FlexNet license manager). The INUSE and RESERVE fields
add up to the rusage of RUN jobs in the cluster.

OVER

The number of licenses checked out by RUN jobs in the cluster under the
license project in excess of the rusage.

FREE

The number of licenses that the cluster under the license project has free (The
license tokens have been allocated to the license project by License Scheduler,
but the licenses are not reserved and have not yet been checked out from the
FlexNet license manager).

DEMAND

Numeric value reported from the cluster indicating the number of tokens
required by the cluster under the license project.

Project group output (project mode)

SHARE_INFO_FOR

The root member and name of the hierarchical project group. The project
information displayed after this title shows the information specific to this
particular project group. If this root member is itself a member of another
project group, the relationship is displayed as follows:

/root_name/member_name/...

PROJECT/GROUP

The members of the hierarchical group, listed by group or project name.

-slots output

Displays the following:
v Current job slots in use: The total number of slots currently being used by

License Scheduler jobs, including taskman jobs.
v Peak job slots used: The peak number of slots in use since the last time

License Scheduler was restarted.

Viewing license feature locality

In project mode, when LOCAL_TO is configured for a feature in
lsf.licensescheduler, blstat shows the cluster locality information for the license
features.

Sample output

For example, for a cluster mode feature:
blstat -t f1000
FEATURE: f1000 q
SERVICE_DOMAIN: Lan12

blstat

162 Using IBM Platform License Scheduler

TOTAL_TOKENS: 1000 TOTAL_ALLOC: 967 TOTAL_USE: 655 OTHERS: 25
CLUSTER SHARE ALLOC TARGET INUSE RESERVE OVER PEAK BUFFER FREE DEMAND
clusterA 66.7 % 647 15 0 655 0 658 100 0 7452
clusterB 33.3 % 320 15 0 0 0 0 - 320 0
SERVICE_DOMAIN: Lan99
TOTAL_TOKENS: 2000 TOTAL_ALLOC: 2000 TOTAL_USE: 0 OTHERS: 0
CLUSTER SHARE ALLOC TARGET INUSE RESERVE OVER PEAK BUFFER FREE DEMAND
clusterA 25.0 % 500 15 0 0 0 0 100 500 0
clusterB 25.0 % 500 15 0 0 0 0 100 500 0
clusterC 25.0 % 500 15 0 0 0 0 - 500 0
clusterD 25.0 % 500 15 0 0 0 0 - 500 0

For example, for a project mode feature with a group distribution configuration
blstat shows the locality of the hspice feature configured for various sites:
blstat
FEATURE: hspice
SERVICE_DOMAIN: SD3 SD4
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 22 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 3 1 0 0 11
Lp2 50.0 % 1 3 0 0 11

FEATURE: hspice@clusterA
SERVICE_DOMAIN: SD1
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 25 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 4 0 0 12 3
Lp2 50.0 % 5 0 0 13 1

FEATURE: hspice@siteB
TOTAL_INUSE: 0 TOTAL_RESERVE: 0 TOTAL_FREE: 65 OTHERS: 0
PROJECT SHARE OWN INUSE RESERVE FREE DEMAND
Lp1 50.0 % 4 0 0 32 2
Lp2 50.0 % 5 0 0 33 6

For example, for a project mode feature, blstat -c displays the following:
blstat -c f50
FEATURE: f50
PROJECT CLUSTER INUSE RESERVE FREE NEED ACUM_USE SCALED_ACUM AVAIL
myProj2 interactive 0 0 9 0 0.0 0.0 9

clusterA 0 0 8 0 0.0 0.0 0
clusterB 0 0 8 0 0.0 0.0 0

default interactive 0 0 9 0 0.0 0.0 9
clusterA 0 0 8 0 0.0 0.0 0
clusterB 0 0 8 0 0.0 0.0 0

For example, for a fast dispatch project mode feature, blstat -c displays the
following:
blstat -c f100
FEATURE: f100
PROJECT CLUSTER ALLOC TARGET INUSE RESERVE OVER FREE DEMAND
myProj1 interactive 4 4 0 0 0 4 0

clusterA 3 3 0 0 0 3 0
clusterB 3 3 0 0 0 3 0

myProj2 interactive 30 30 0 0 0 30 0
clusterA 30 30 0 0 0 30 0
clusterB 30 30 0 0 0 30 0

See also

blhosts, blinfo

bltasks
Displays License Scheduler interactive task information

blstat

Chapter 6. Reference 163

Synopsis

bltasks [-l] [task_ID]

bltasks [-l] [-p | -r | -w] [-Lp "ls_project_name..."] [-m "host_name..."] [-t
"terminal_name..."] [-u "user_name..."]

bltasks [| -h | -V]

Description

Displays current information about interactive tasks managed by License Scheduler
(submitted using taskman).

By default, displays information about all tasks.

Options

task_ID

Only displays information about the specified task.

-l

Long format. Displays detailed information for each task in a multiline format.

-p

Only displays information about tasks with PREEMPTED status.

Cannot be used with -r or -w.

-r

Only displays information about tasks with RUN status.

Cannot be used with -p or -w.

-w

Only displays information about tasks with WAIT status.

Cannot be used with -p or -r.

-Lp "ls_project_name..."

Only displays information about tasks associated with the specified projects.

If project group paths are enabled (PROJECT_GROUP_PATH=Y in
lsf.licensescheduler) and a task has multiple effective license projects, only
displays the first task associated with the specified effective license project.

-m "host_name..."

Only displays information about tasks submitted from the specified hosts.

-t "terminal_name..."

Only displays information about tasks submitted from the specified terminals.

-u "user_name..."

Only displays information about tasks submitted by the specified users.

-h

Prints command usage to stderr and exits.

bltasks

164 Using IBM Platform License Scheduler

-V

Prints License Scheduler release version to stderr and exits.

Default Output

Displays the short format with the following information:

TID

Task ID that License Scheduler assigned to the task.

USER

The user who submitted the task.

STAT

The current status of the task.
v RUN: Task is running.
v WAIT: Task has not yet started.
v PREEMPT: Task has been preempted and currently has no license token.

HOST

The name of host from which the task was submitted.

PROJECT

The name of the project to which the task belongs.

FEATURES

Name of the License Scheduler token.

CONNECT TIME

The submission time of the task.

EFFECTIVE_PROJECT

The actual project that the job used. If group project paths are enabled
(PROJECT_GROUP_PATH=Y in the Parameters section of
lsf.licensescheduler), License Scheduler attempts to calculate a proper
project according to the configuration if the license project does not exist or is
not authorized for the features. Otherwise, the submission license project is the
effective license project.

Output for -l Option

Displays detailed information for each task in multi-line format. If the task is in
WAIT status, bltasks displays "The application manager is waiting for a token to
start" and the resource requirement. Otherwise, the current resource usage of task
is displayed as follows:

TERMINAL

The terminal the task is using.

PGID

UNIX process group ID.

CPU

The total accumulated CPU time of all processes in a task, in seconds.

bltasks

Chapter 6. Reference 165

MEM

Total resident memory usage of all processes in a task, in KB.

SWAP

Total virtual memory usage of all processes in a task, in KB.

Keyboard idle since

Time at which the task became idle.

RES_REQ

The resource requirement of the task.

Command line

The command the License Scheduler task manager is executing.

blusers
Displays license usage information for License Scheduler

Synopsis

blusers [-J [-u user_name]] [-t token_name...] [-l]

blusers -P -j job_ID -u user_name -m host_name [-c cluster_name]

blusers [-h | -V]

Description

By default, displays summarized information about usage of licenses.

Options

-J

Displays detailed license resource request information about each job.

In cluster mode, blusers -J displays tokens for CLASS-C features, which are
tokens that are checked out to features that a job did not explicitly request.
These features have an INUSE value, but no RUSAGE value.

-u user_name

Displays detailed license resource request information about each job belonging
to the single user specified.

-t

Displays detailed license resource request information about each job using the
token names specified.

-l

Long format. Displays additional license usage information.

-P -j job_ID -u user_name -m host_name
-P -c cluster_name -j job_ID -u user_name -m host_name

This string of options is designed to be used in a customized preemption
script. To identify a job, specify the LSF job ID, the user name, the name of the
host where the job is running, and the cluster name.

bltasks

166 Using IBM Platform License Scheduler

(If the job is an interactive task submitted using taskman, do not specify -c
cluster_name.)
You see the display terminal used by the job, the licenses it has checked out,
and the license servers that provided the licenses. There is one line of output
for each license feature from each FlexNet license server, in the format:
port_number@host_name token_name user_name host_name display

-h

Prints command usage to stderr and exits.

-V

Prints License Scheduler release version to stderr and exits.

Default Output

FEATURE

The license name. This becomes the license token name.

SERVICE_DOMAIN

The name of the service domain that provided the license.

USER

The name of the user who submitted the jobs.

HOST

The name of the host where jobs have started.

NLICS

The number of licenses checked out from FlexNet.

NTASKS

The number of running tasks using these licenses.

-J Output

Displays the following summary information for each job:

JOBID

The job ID assigned by LSF.

USER

The name of the user who submitted the job.

HOST

The name of the host where the job has been started.

PROJECT

The name of the license project that the job is associated with.

CLUSTER

The name of the LSF cluster that the job is associated with. Displays “-” for an
interactive job.

START_TIME

The job start time.

blusers

Chapter 6. Reference 167

Displays the following information for each license in use by the job:

RESOURCE

The name of the license requested by the job.

RUSAGE

The number of licenses requested by the job.

SERVICE_DOMAIN

The name of the service domain that provided the license.

The keyword UNKNOWN means the job requested a license from License
Scheduler but has not checked out the license from FlexNet.

INUSE

The number of checked out licenses. Displays ’-’ when SERVICE_DOMAIN is
UNKNOWN.

EFFECTIVE_PROJECT

The actual project that the job used. If group project paths are enabled
(PROJECT_GROUP_PATH=Y in the Parameters section of
lsf.licensescheduler), License Scheduler attempts to calculate a proper
project according to the configuration if the license project does not exist or is
not authorized for the feature. Otherwise, the submission license project is the
effective license project.

Long Output (-l)

Displays the default output and the following additional information for each job:

OTHERS

License usage for non-managed or non-LSF workload.

DISPLAYS

Terminal display associated with the license feature.

Viewing license feature locality

When LOCAL_TO is configured for a feature in lsf.licensescheduler, blusers
shows the cluster locality information for the license features. For example:
blusers
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS
hspice@clusterA SD1 user1 host1 1 1
hspice@siteB SD2 user2 host2 1 1

Examples
blusers -l
FEATURE SERVICE_DOMAIN USER HOST NLICS NTASKS OTHERS DISPLAYS
feat1 LanServer user1 hostA 1 1 0 (/dev/tty)

blusers -J
JOBID USER HOST PROJECT CLUSTER START_TIME
553 user1 hostA project3 cluster1 Oct 5 15:47:14
RESOURCE RUSAGE SERVICE_DOMAIN INUSE EFFECTIVE_PROJECT
feature1 1 SD1 1 /group2/project3
feature2 1 SD1 1 /group2/others
feature3 - SD1 1 /group2/project3

blusers

168 Using IBM Platform License Scheduler

See also

blhosts, blinfo, blstat

fod.conf
The fod.conf file contains FOD configuration information. All sections are
required.

The command fodinfo displays configuration information from this file.

Parameters section
Defines FOD configuration.

Structure

The first and last lines are:
Begin Parameters

End Parameters

Each subsequent line describes one configuration parameter. All parameters are
required.

FOD_ADMIN
Syntax

FOD_ADMIN=user_name

Description

The FOD administrator. Specify a valid UNIX user account.

FOD_CLUSTERNAME
Syntax

FOD_CLUSTERNAME=cluster_name

Description

The FOD cluster name.

FOD_LOG_DIR
Syntax

FOD_LOG_DIR=dir

Description

Location of the FOD log files.

FOD_PORT
Syntax

FOD_PORT=integer

blusers

Chapter 6. Reference 169

Description

UDP port used by FOD. Specify any port number from 512 to 65536.

FOD_WORK_DIR
Syntax

FOD_LOG_DIR=dir

Description

Location of the FOD working files.

Hosts section
Lists the FOD master host candidates.

Structure

The Hosts section begins and ends with the lines Begin Hosts and End Hosts. The
second line is column heading, HOSTNAME. Subsequent lines list candidate
master hosts, one name per line:
Begin Hosts

HOSTNAME

host_name1

host_name2

End Hosts

HOSTNAME

Specify a fully qualified host name such as hostX.mycompany.com. The first
host listed is the master..

The domain name may be omitted if all the hosts are in the same DNS
domain.

Applications section
The application controlled by FOD. Specify only one application.

Structure
Begin Applications

NAME Path PARAMS FATAL_EXIT_VALUE

application_name dir parameters (integer...)

End Applications

NAME

The name of the application managed by FOD.

PATH

The path to the location of the application.

PARAMS

The application parameters. Specify a dash (-) to indicate that the application
has no parameters.

FATAL_EXIT_VALUE

fod.conf

170 Using IBM Platform License Scheduler

Optional. Exit values for which FOD does not automatically restart the
application. Specify a space-separated list of one or more exit values, within
parentheses.

fodadmin
Starts applications under FOD or shuts down FOD.

Synopsis

fodadmin shutdown [host_name... | all] fodadmin [-h | -V]

You must be License Scheduler administrator to use this command.

This command starts applications under FOD or shuts down FOD.

By default, shuts down FOD on the local host.

Options

shutdown [host_name... | all]

Shuts down FOD on the specified hosts. This may shut down applications on
the hosts that are managed by FOD. If you shut down the master host, FOD
starts up on another host, if possible. Specify all to shut down FOD for the
cluster.

-h

Prints command usage to stderr and exits.

-V

Prints FOD release version to stderr and exits.

fodapps
Displays status of applications managed by FOD.

Synopsis

fodapps [-l | | -h | -V]

Description

Lists all applications managed by FOD and displays information about them.

By default, displays status, PID, and host for each application.

Options

-l

Long format. Also displays path and parameters for each application.

-h

Prints command usage to stderr and exits.

-V

Prints FOD release version to stderr and exits.

fod.conf

Chapter 6. Reference 171

Default output

NAME

Name of the application managed by FOD.

STATUS

The status of the application:

running

The application has started and is running properly.

initial

FOD has not yet attempted to start the application. This state is only seen
at startup time.

exit

The application failed to start properly. FOD automatically restarts the
application.

PID

The application process ID.

HOST

The name of the FOD master host. All applications managed by FOD run on
the FOD master host.

-l output

PATH

The full path of the application.

PARAMETERS

The application parameters.

fodhosts
Displays the status of FOD hosts.

Synopsis

fodhosts [-h | -V]

Description

Lists all FOD hosts and displays status.

The first host listed with ok status is the master host..

Options

-h

Prints command usage to stderr and exits.

-V

Prints FOD release version to stderr and exits.

fodapps

172 Using IBM Platform License Scheduler

Output

HOST_NAME

Name of FOD host.

STATUS

Status of FOD host.

ok

FOD is running properly on the host.

unavail

Unavailable. The host may be down or FOD may not be started on the
host.

fodid
Displays FOD master host and version information.

Synopsis

fodid [-h | -V]

Description

Displays name of current master host and current version of FOD. Confirms that
FOD is started and running.

Options

-h

Prints command usage to stderr and exits.

-V

Prints FOD release version to stderr and exits.

taskman
checks out a license token and manages interactive UNIX applications

Synopsis

taskman -R “rusage[token=number[:duration=minutes | hours h]
[:token=number[:duration=minutes | hours h][|| token=number[:duration=minutes |
hours h] [:token=number[:duration=minutes | hours h]] ...] [-Lp project] [-N n_retries]
[-v] command

taskman [-h | -V]

Description

Runs the interactive UNIX application on behalf of the user. When it starts, the
task manager connects to License Scheduler to request the application license
tokens. When all the requested licenses are available, the task manager starts the
application. While the application is running, the task manager monitors resource

fodhosts

Chapter 6. Reference 173

usage, CPU, and memory, and reports the usage to License Scheduler. When the
application terminates, the task manager exits.

By default, a license is reserved for the duration of the task, so the application can
check out the license at any time. Use the duration keyword if you want unused
licenses to be reallocated if the application fails to check out the license before the
reservation expires.

Options

command

Required. The command to start the job that requires the license.

-v

Verbose mode. Displays detailed messages about the status of configuration
files.

-N n_retries

Specifies the maximum number of retry attempts taskman takes to connect to
the daemon. If this option is not specified, taskman retries indefinitely.

-Lp project

Optional. Specifies the interactive license project that is requesting tokens. The
client must be known to License Scheduler.

License project limits do not apply to taskman jobs even with -Lp specified.

-R rusage[token=number [:duration=minutes | hours h] [:token=number
[:duration=minutes | hours h]][|| token=number [:duration=minutes | hours
h] [:token=number [:duration=minutes | hours h]]] ...]

Required. Specifies the type and number of license tokens to request from
License Scheduler. Optionally, specifies a time limit for the license reservation,
expressed as an integer (the keyword h following the number indicates hours
instead of minutes). You may specify multiple license types, with different
duration values. Separate each requirement with a colon (:) as a logical AND
operator, and a double-pipe (||) as a logical OR operator. Enclose the entire list
in one set of square brackets.

Note: If you specify alternative or compound resource requirements, taskman
only accepts the first resource requirement string and ignores the other
resource requirement strings.

For example,

Alternative resource requirement
taskman -R "{rusage[f2=2]}||{rusage[f2=1]}" myjob

Compound resource requirement
taskman -R "{rusage[f2=2]}+{rusage[f2=1]}" myjob

In both cases, taskman only accepts the rusage[f2=2] string.

-h

Prints command usage to stderr and exits.

-V

Prints the License Scheduler release version to stderr and exits.

taskman

174 Using IBM Platform License Scheduler

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1992, 2013 175

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

176 Using IBM Platform License Scheduler

programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at "Copyright and trademark information"
at http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

LSF®, Platform, and Platform Computing are trademarks or registered trademarks
of International Business Machines Corp., registered in many jurisdictions
worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software

Notices 177

http://www.ibm.com/legal/copytrade.shtml

Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

178 Using IBM Platform License Scheduler

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

����

Printed in USA

SC27-5308-02

	Contents
	Chapter 1. Introduction
	Overview
	Differences between License Scheduler editions
	Glossary
	Architecture

	Chapter 2. Installing and starting License Scheduler
	Install License Scheduler
	Before you install
	What the License Scheduler setup script does
	Install License Scheduler with LSF (UNIX)
	Install License Scheduler on Windows
	Troubleshoot
	Configure License Scheduler Basic Edition

	Start License Scheduler
	LSF parameters in License Scheduler
	About submitting jobs
	After configuration changes
	Add a cluster to License Scheduler
	Configure multiple administrators
	Upgrade License Scheduler
	Firewalls
	Set up firewall communication

	Chapter 3. License Scheduler concepts
	License Scheduler modes
	Project groups
	Service domains in License Scheduler
	Distribution policies
	Cluster mode distribution policies
	Project mode distribution policies

	Project mode preemption
	Basic preemption with projects configured
	Hierarchical preemption with project groups configured
	Preemption restrictions
	LSF preemption with License Scheduler preemption

	License usage with FlexNet
	Known license requirements
	Unknown license requirements
	Project mode
	Cluster mode

	Chapter 4. Configuring License Scheduler
	Configure cluster mode
	Configure parameters
	Configure clusters
	Cluster mode service domains
	Configure license features
	Configure taskman jobs in cluster mode
	Allocate licenses to non-LSF jobs
	Restart to implement configuration changes
	View license allocation

	Configure cluster mode with guarantees
	Configure service classes
	Configure a resource pool of license tokens
	Configure loans
	Configure a queue with access to all guaranteed resources
	Restart for changes to take effect
	View guaranteed resource pools

	Project mode with projects
	Configure parameters
	Configure clusters
	Configure projects
	Project mode service domains
	Configure license features
	Track partial and unspecified license use
	Restart to implement configuration changes
	View projects and descriptions
	View license allocation

	Project mode optional settings
	Active ownership
	Default projects
	Groups of projects
	Configure interactive (taskman) jobs
	Configure cluster and interactive allocations
	Configure feature groups
	Restart to implement configuration changes
	View license feature group information
	License feature locality

	Project mode with project groups
	Configuring project groups

	Configure fast dispatch project mode
	Configure parameters
	Restart to implement configuration changes
	View license allocation
	Configure lmremove preemption

	Automatic time-based configuration
	Syntax
	Specify time values
	Specify time windows
	Specify time expressions
	Create if-else constructs
	Restart to implement configuration changes
	Verify configuration
	Examples

	Failover
	Failover provisioning for LANs
	Failover provisioning for WANs
	Set up fod

	User authentication
	Enable user authentication

	Chapter 5. Viewing information and troubleshooting
	About viewing available licenses
	View license server and license feature information passed to jobs

	About error logs
	Manage log files
	Temporarily change the log level

	Troubleshooting
	File locations
	Check that lmstat is supported by blcollect

	Chapter 6. Reference
	lsf.licensescheduler
	Parameters section
	Clusters section
	ServiceDomain section
	Feature section
	FeatureGroup section
	ProjectGroup section
	Projects section
	Automatic time-based configuration

	bladmin
	blcollect
	blcstat
	blhosts
	blinfo
	blkill
	blparams
	blstat
	bltasks
	blusers
	fod.conf
	Parameters section
	Hosts section
	Applications section

	fodadmin
	fodapps
	fodhosts
	fodid
	taskman

	Notices
	Trademarks
	Privacy policy considerations

